
Design and Evaluation of Persea, a Sybil-Resistant DHT

Mahdi Nasrullah Al-Ameen
The University of Texas at Arlington

Arlington, TX, USA
mahdi.al-ameen@mavs.uta.edu

Matthew Wright
The University of Texas at Arlington

Arlington, TX, USA
mwright@cse.uta.edu

ABSTRACT
P2P systems are inherently vulnerable to Sybil attacks, in which
an attacker creates a large number of identities and uses them to
control a substantial fraction of the system. We propose Persea, a
novel P2P system that derives its Sybil resistance by assigning IDs
through a bootstrap tree, the graph of how nodes have joined the
system through invitations. Unlike prior Sybil-resistant P2P sys-
tems based on social networks, Persea does not rely on two key
assumptions: (1) that the social network is fast mixing and (2) that
there is a small ratio of attack edges to honest nodes. Both assump-
tions have been shown to be unreliable in real social networks. A
node joins Persea when it gets an invitation from an existing node
in the system. The inviting node assigns a node ID to the joining
node and gives it a chunk of node IDs for further distribution. For
each chunk of ID space, the attacker needs to socially engineer a
connection to another node already in the system. The hierarchical
distribution of node IDs confines a large attacker botnet to a consid-
erably smaller region of the ID space than in a normal P2P system.
We then build upon this hierarchical ID space to make a distributed
hash table (DHT) based on the Kad network. The Persea DHT uses
a replication mechanism in which each (key, value) pair is stored
in nodes that are evenly spaced over the network. Thus, even if a
given region is occupied by attackers, the desired (key, value) pair
can be retrieved from other regions. We evaluate Persea in analy-
sis and in simulations with social network datasets and show that
it provides better lookup success rates than prior work with modest
overheads.

Categories and Subject Descriptors
C.2.4 [Communication Networks]: Distributed Systems-Distributed
applications

Keywords
Sybil attack; security; social DHT

1. INTRODUCTION
Peer-to-peer (P2P) systems are highly susceptible to Sybil at-

tacks, in which an attacker creates a large number of pseudonymous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’14, June 4–6, 2014, Kyoto, Japan.
Copyright 2014 ACM 978-1-4503-2800-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2590296.2590326.

entities and uses them to gain a disproportionately large influence
over the system [6, 7, 9, 13]. A malicious node may present multi-
ple identities to a P2P system that appear and function as distinct
nodes. By becoming part of the P2P system, the Sybil attackers
can then collude to launch further attacks to subvert the system’s
operation, such as taking over resources and disrupting connectiv-
ity. Researchers have documented this vulnerability in real-world
systems, including the Maze P2P file-sharing system [14, 34] and
the Vanish data storage system [33].

Many P2P systems employ a distributed hash table (DHT), which
provides a lookup service similar to a hash table: (key, value) pairs
are stored in a DHT, and any participating node can efficiently re-
trieve the value associated with a given key. Well-known DHT-
based systems, or simply DHTs, include Chord [27], CAN [22],
Pastry [23], and Kademlia [17]. Kademlia was the basis for both
the Kad network and Vuze, DHTs used in the popular BitTorrent
file-sharing P2P system with millions of users each.

Recent research has focused on leveraging information from so-
cial networks to make the system robust against Sybil attackers, re-
sulting in a number of decentralized community-based schemes [11,
12, 19, 28, 31, 36, 37]. The key to these approaches is the idea that
honest and malicious nodes can be effectively partitioned into two
subgraphs in the social network. The link between an honest node
and a malicious peer is called an attack edge, which represents an
act of social engineering to convince the honest node to add the
link.

These mechanisms are based on two key assumptions:
• Online social networks are fast mixing, meaning that a random

walk in the honest part of the network approaches the uniform
distribution in a small number of steps.
• The number of attack edges are rather limited in an online social

network, as benign users are unlikely to accept friend requests
from strangers.

Recent studies [3, 20, 30, 35], however, show that the above as-
sumptions do not hold in real-world social networks. Thus, the
effectiveness of these schemes are left as an open question. In
particular, Mohaisen et. al. [20] show that in social graphs where
edges correspond to strong real-world trust (e.g., Epinions, Physics
co-authorship, DBLP, etc.), the mixing-time is not as fast as the
community-based schemes assume. Thus, the schemes do not per-
form well on “trusted” social graphs. Further, Viswanath et al. have
shown that a number of Sybil defenses are ineffective for slower-
mixing, highly modular social networks [30].

At the same time, recent work shows that the probability with
which fake identities are accepted as friends is much higher than
anticipated [25], with studies reporting that users accept 40− 80%
of friendship requests from strangers [3, 5]. This implies that that
number of attack edges may not be small, even as a fraction of

the number of honest nodes. As the assumption of few attack
edges breaks down, prior schemes do not work well. The Whānau
scheme, for example, requires 10-100 times the overhead to get
successful lookups when there is one attack edge per honest node.
Contributions. These findings about online social networks mean
that it remains an open research problem to design an effective
Sybil defense that does not rely on the assumptions of a fast-mixing
social network and a small number of attack edges. In this pa-
per, we propose a Persea, a new Sybil-resistant DHT that addresses
these problems.

In Persea, existing nodes invite new peers to join the system.
When a node joins the DHT it also creates a link with the invit-
ing node. This creates a bootstrap tree, linking nodes together
through invitation relationships. We then leverage the social re-
lationships among honest nodes for building a robust DHT. We de-
velop a mechanism to distribute hierarchical node IDs based on the
bootstrap tree. In this mechanism, when a node joins the system
after getting an invitation, the inviting node assigns a node ID to
the joining node and gives it a chunk of node IDs for further dis-
tribution.1 ID and chunk assignment are certified in a chain from
the root of the bootstrap tree. The use of a bootstrap tree relies
heavily on the root nodes in the early stages of system deployment,
but by careful design of how IDs are certified, the reliance on these
nodes can be minimized. Based on this ID distribution method,
we then design a DHT routing table and lookup protocol based on
the Kademlia design [17], with modest modifications to enhance
robustness.

The Persea approach offers a number of important advantages
over existing schemes:
• Persea does not depend on assuming that there are few attack

edges compared to the benign nodes. Let g denote the number
of attack edges and n be the honest nodes. Our simulation results
show that even for g/n = 1.0—i.e. one attack edge for every
honest node—95.6% of lookups still succeed.
• Although Persea may work better for fast-mixing social net-

works, our system is also dependable for slow-mixing social net-
works. For the slowest-mixing social network we evaluated on
and g/n = 0.5, Persea lookups succeed 96.2% of the time.
• The hierarchical distribution of node IDs limits the attackers to

isolated regions in the ID space. Even for g/n = 1.0, only 0.7%
of the total ID space is occupied by attackers.
• Building a bootstrap tree is more realistic than assuming that

the clients have access to authenticated lists of social network
connections or activity levels from a system like Facebook; such
lists may also bear little resemblence to social connections inside
the P2P system.

Additionally, Persea has several other important features:
• Although we test Persea with a DHT routing table design similar

to Kademlia [17], which is widely used, it can be adapted to
other DHTs.
• IDs are certified, making attacks based on ID forging impossible

outside of attacker-controlled ID ranges.
• Varying the number of attackers per attack edge does not signif-

icantly affect the lookup success rate in Persea.
• Sybil-resilient system design is inherently probabilistic [28], and

thus our system provides resilience against further attacks, in-

1The name Persea comes from a tree in ancient Egyp-
tian mythology (also called the ished tree) upon whose
leaves the Gods wrote the names of the pharaohs (see
http://www.touregypt.net/featurestories/
treegoddess.htm).

cluding denial of service, node ID hijacking, and node insertion,
that may be launched by the existing Sybil nodes in the system.

2. RELATED WORK
Due to the power and generality of the Sybil attack, a large num-

ber of defenses have been proposed [1, 13]. In this section, we
examine the use of social networks for Sybil defense.
Random walks over social networks. A number of works have
proposed Sybil detection techniques or Sybil resistance based on
random walks over a social network [8, 11, 12, 19, 28, 31, 36, 37].
The basic idea is that we can divide the social network into a Sybil
region and an honest region connected via a small number of at-
tack edges (a small cut). Random walks starting from the honest
region have a low probability of ending in the Sybil region. This
can be leveraged in a variety of ways, leading to detection mech-
anisms [8, 30, 31, 36, 37], admission control mechanisms [28], and
Sybil-resistant P2P designs [11, 12, 19].

These mechanisms require the absence of small cuts within the
honest region in the underlying social network. Equivalently, the
honest region should be fast-mixing. Mohaisen et al., however,
show that the mixing time of many real social networks is slower
than the mixing times assumed by these works [20]. Additionally,
many real-world social networks fail to satisfy the other require-
ments of the systems, either because a significant fraction of nodes
are sparsely connected or the users are organized in small tightly-
knit communities, which are sparsely interconnected [29]. Finally,
even perfect community-based defenses would fail against existing
Sybil attacks due to the lack of a Sybil community structure [1,35].
DHTs Built on Social Networks. Three key related works are the
Sybil-resistant DHT, Whānau, and X-Vine, and we compare these
with Persea in Table 1.

Danezis et al. propose a Sybil-resistant DHT routing protocol [7]
that makes use of latent social information that is present in the
bootstrap graph of the network. While they pioneered the bootstrap
graph model that inspires our work, we note two major shortcom-
ings of their approach. First, the DHT layer is built on top of the
bootstrap graph, creating a second overlay layer. This means that
one hop in the DHT layer corresponds to a number of hops in the
bootstrap graph, each of which is itself an Internet connection. This
adds substantial delay and overhead beyond the DHT. Second, the
scheme provides diversity in the bootstrap graph at the expense of
following the DHT lookup graph. This further extends the lookup
delay and overhead. When there is one attack edge per honest node,
a lookup in a network of just 100 honest nodes requires over 50 re-
quests to succeed.

Lesniewski-Laas proposed Whānau [11, 12], in which a node
constructs its routing table through independent random walks and
recording the final node in each walk as the finger in its routing
table. Whānau requires significant routing table state on the order
of O(

√
m logm), where m is the number of objects stored in the

DHT. Mittal et al. point out that the network overhead for main-
taining this state can be substantial (e.g. 800 KBps per node) [19].
Further, Whānau overheads increase further if large numbers of at-
tack edges grows, such that for g/n = 1.0, either routing table
sizes grow by 10-100 times or lookup redundancy must grow to 50
or more compared to the regular protocol [12].

X-Vine [19] is a DHT built by communicating only over social
network edges. Honest peers rate-limit the number of paths that
are allowed to be built over their adjacent edges, which helps to
limit the number of Sybil nodes that can join the system. X-Vine,
however, relies on the fast-mixing assumption and was only evalu-
ated with a small number of attack edges (one for every ten honest
nodes). Rate-limiting only works when there are few attack edges,

Table 1: Comparison of Sybil-resistant DHTs. Grey squares indicate limitations of the system. [(?): varies from less than 20 to over
50 depending on the network and routing table sizes, (†): based on limited results [7]]

Whānau X-Vine Sybil-resistant Persea

Reliance on fast mixing Yes Yes No No
Requires that users provide a full social network Yes Yes No No
Lookups succeed at g/n = 1.0 Yes Not tested Yes Yes
Total messages for a lookup at g/n = 1.0 O(1)? Unknown ∼ 0.53× n† O(log (n))

Total messages for a lookup at g/n = 0.1 O(1) O(log(n)) ∼ 0.44× n† O(log (n))

Routing table size Ω(
√
n) O(log(n)) O(log(n)) O(log (n))

as an attacker with one attack edge per honest node should have the
same rate of paths as the honest nodes in the system. Thus, very
high levels of redundancy may be required for successful lookups
when the number of attack edges is high.

We note that both Whānau and X-Vine use public keys to provide
important security properties.

3. GOALS AND ASSUMPTIONS
In this section, we describe our system design goals and our sys-

tem and attacker models.

3.1 Design Goals
In designing Persea, we have the following Design Goals:
1. Sybil-resistent lookups. The system should maintain high suc-

cess rates for lookups in the presence of Sybil attackers seeking to
undermine the system’s operations, even if the number of attack
edges grows to high levels (e.g. g/n = 1.0). Prior work does not
handle large numbers of attack edges.

2. Works on a range of social networks. The system should work
well for any reasonable structure in the underlying social network,
even if the social network is not fast mixing. Most existing systems
rely on the fast-mixing property.

3. Builds its own social network. The system should build its
own social network to defeat Sybil attacks and not rely on users or
online social networks (OSNs).

4. Moderate overhead. System overheads, such as routing ta-
ble size, the number of overlay hops to perform a lookup, and the
number of redundant lookups, should be kept to reasonable levels.

Regarding Design Goal #3, we find that most existing Sybil de-
fenses require a social network without specifying where the net-
work information comes from. One possible source would be from
user input, but it is unclear how to motivate users to provide more
than a minimal amount of information. Note that the fast-mixing
property needed by many systems is particularly hard to obtain
from a limited subset of edges. Another possible source would
be to get the data from an OSN, but this has many issues. First, a
few users may not even have accounts on the selected OSN, while
others may not want to share their OSN network with the P2P sys-
tem for privacy reasons. Also, relationships between users in the
P2P system may be vastly different than those in the OSN, as even
a popular P2P system would likely have only a fraction of all OSN
members. Finally, an OSN like Facebook may attempt to block the
P2P system from mining its network information, which is gen-
erally protected due to its value for advertising. This is especially
true for mining enough information to formulate interaction graphs
that only include edges between active communication partners and
are thus more reliable than friendship graphs for use in Sybil de-
fense [3, 4, 10, 32].

3.2 System Model
The key assumptions about our system involve how we model

users and social links. Participating in Persea requires an invitation
from an existing user, and new users can request invitations from an
existing user if they have her out-of-band contact information, such
as an email address. The P2P client UI can integrate a request in the
system with a code sent to the email address for verification. We
assume that honest users generally accept invitation requests from
people they know in real life. Thus, the links created from the set of
accepted invitations form a subgraph of the social network known
as a bootstrap graph. The structure of this network may vary and it
is beyond the scope of this paper to identify requirements for either
the bootstrap graph or the underlying social network. We instead
evaluate our system with a variety of social networks with differ-
ent properties to show that Persea is effective for a broad range of
networks.

The bootstrap graph starts with a small set of bootstrap nodes.
We make the following assumptions about the early stages of build-
ing the system: (1) bootstrap nodes are honest and (2) bootstrap
nodes trust each other. The creation of a bootstrap graph starting
from a trusted set of nodes allows us to obviate the use of OSN data
and thus achieve Design Goal #3. The assumptions are reasonable,
since the bootstrap nodes together take the initiative to start build-
ing the system. As the system passes the initial stage of growth
and reaches a modest population size, we can gradually relax these
requirements. In particular, the bootstrap nodes no longer need to
be honest or trust each other for the system to work well.

As with the prior works on leveraging social networks for Sybil-
resistent DHTs [12, 19] (see §2), Persea uses public keys to certify
IDs. Also like X-Vine [19], we suggest to ensure the integrity of
content or services by using self-certifying identifiers on returned
lookup results [2, 18].

3.3 Attacker Model
We assume that the attacker is a single entity, or a small and

highly coordinated group, with access to substantial computational
and network resources. For example, the attacker can control a
botnet. The attacker’s goal is to disrupt the operations of the P2P
network, and the lookup operation in particular, as lookups are the
mechanism for distribution of information and resources in a DHT.
To do this, the attacker seeks to add malicious nodes to the system
and then have them disrupt the system’s activities.
Adding malicious nodes. The attacker can first attempt to find
users of the P2P system and socially engineer them into giving up
an invitation. Such an invitation is called an attack edge in the
social network. We note that targeting specific users may be de-
sirable when attacking Persea, but this is difficult without external
information about exactly who the key users are and how to contact

A (ID : 0) B (ID : 512)

a2 (ID : 58)a1 (ID : 1) b1 (ID : 513)

a21(ID : 59) b11(ID : 514)

0 511 512 1023

1 57 58 114457 511 513 569 570 626 969 1023

59 71 514 526

A's chunk B's chunk

a1's chunk a2's chunk Yet not
assigned

Yet not
assigned

Yet not
assigned

a21's chunk b11's chunk

b1's chunk

Figure 1: Hierarchical Distribution of Node IDs

them. This information is not meant to be publicly available. In-
stead, the attacker gathers invitations from anyone using the system
who he can identify and trick. We model this as getting invitations
via uniform selection from the set of honest users. We have not
evaluated Persea for the case that targeted attacks are feasible.

In our evaluations, we limit the number of attack edges that an
attacker can get via social engineering to a ratio of at most one per
honest node on average. We note that prior schemes face very high
overheads at such ratios, which are realistic given studies show-
ing that OSN users accept fake and duplicate accounts at a rate of
40 − 80% [3, 4]. Unlike most OSNs, we attempt to limit attack
edges via three methods: (i) Invitation requests should require that
a code be sent through an out-of-band channel; (ii) When using
such a code to issue an invitation, the client UI can warn users to
not invite strangers; and (iii) Each user has a limited number of
invitations (the amount used would be shown to users) due to our
system design (see §4). Thus, there is an incentive for users to
not be overly promiscuous with invitations and to only invite peers
based on actual social connections.

Once an invitation is accepted, the attacker may proceed to invite
an arbitrary number of malicious peers. This is unlike X-Vine and
detection approaches like SybilLimit that use rate limits to effec-
tively keep the attacker to a small number of Sybil nodes per attack
edge [19,36]. In such approaches, an attacker can use a large num-
ber of attack edges (e.g. one per honest node) to overcome the rate
limits and overwhelm the system.

The attacker does not invite honest nodes, as this provides him
with no advantage in our system. An attacker node could leave the
system and join again under a different identity, but doing so pro-
vides no advantages, as we do not employ detection or reputation
mechanisms. Further, the attacker might lose an attack edge, and
so we do not model attacker churn in our evaluation.
Attacking lookups. An attacker with a large number of malicious
peers then proceeds to attack the system. Rather than simply drop-
ping lookup requests, the attacker nodes respond with the closest
other attacker nodes to the requested keys. This gives the attacker
nodes the best chance to appear later in the lookup path and thus
manipulate the final lookup results. If, at the end of the lookup, an
attacker node is finally asked for the requested information, it will
then drop the request.

We also assume that the attacker attempts to manipulate DHT
routing tables. The routing tables in our system, which is based on
Kad, are opportunistically modified based on intermediate query
results, so the attacker’s strategy of returning other attacker nodes
benefits him in this way as well. We assume that the attacker does
not make any lookups.

4. SYSTEM DESIGN
We now describe the Persea design. Persea consists of two lay-

ers: a social network layer (the bootstrap graph) and a DHT layer.
In this paper, an edge refers to a link between two nodes in the DHT
layer. The social network and DHT are simultaneously built start-
ing with a set of bootstrap nodes. The bootstrap nodes assign IDs
to themselves such that they are evenly spaced over the circular ID
space. Thus, the ID space of the DHT is divided into one region for
each bootstrap node.

A new peer must join the Persea system through an invitation
from an existing node in the network. In general, it is expected
that a node that is invited is socially known to the inviting peer.
Thus, inviting a new node is a feature of the social network layer
of Persea. More specifically, when a node is invited, it becomes a
child of the inviting peer in the bootstrap graph. The inviting peer
also gives it an ID and a chunk of IDs that it can use to invite more
nodes to join the network.

The number of nodes that a peer can invite is limited by the num-
ber of IDs in its chunk. Thus, there is an incentive for peers to only
invite other peers based on actual social connections so that it does
not run out of IDs.

The DHT layer of Persea is based largely on Kademlia [17], a
DHT that is widely adopted for the BitTorrent P2P file-sharing sys-
tem. In particular, we use Kademlia’s XOR distance metric to per-
form routing and k-buckets to store contacts. The main difference
in Persea is that IDs are replicated evenly around the ID space for
greater resiliency given our ID distribution scheme.

4.1 Hierarchical ID Space
We now describe how IDs are distributed in Persea. Each boot-

strap node has a contiguous range of IDs called a chunk, which in-
cludes the bootstrap node’s ID. A bootstrap node divides its chunk
of IDs into sub-chunks based on the chunk-factor, a system param-
eter.

When a bootstrap node invites a peer to join the system, it assigns
the new node an ID from one of its sub-chunks and gives it control
over the rest of the sub-chunk. The newly joined node becomes the
authority for distributing IDs from the given sub-chunk and uses
this to invite more nodes to join the system. Based on the invitation-
relationship among peers, a bootstrap tree is formed, in which an
inviter node is the parent of its invited peers. If we have more than
one bootstrap node, then we would have a forest of trees, where
each bootstrap node is the root of a tree. The chunk-factor and size
of the ID space define the maximum possible height and width of
the trees.

This hierarchical ID distribution mechanism features the advan-
tage that even if the attacker compromises a node in the system,
and through it a large number of malicious nodes join the network,
they will still be confined to a particular region of the ID space.

We briefly explain the mechanism with an example illustrated in
Fig. 1. LetA andB be two bootstrap nodes that initiate the system.
If we consider a b-bit ID space, then the total number of IDs in the
DHT nmax would be 2b. In this toy example, we consider a 10-bit
ID space, so nmax = 210. If Z is the number of bootstrap nodes,
each bootstrap nodes has bnmax

Z
c IDs in its chunk. To simplify

the discussion, we ignore issues of uneven division of IDs. In this
example, both node A and node B have 512 IDs. The lowest ID in
a chunk is assigned to the bootstrap node itself and the remaining
IDs are for further distribution to new nodes. In this example, node
A’s ID is 0 and the interval [1, 511] is its chunk of IDs for further
distribution.

Input: Sc: An integer, denoting the number of sub-chunks
Output: B[]: The integer array of size Sc

Variables: i, p, q: Integers
Operations: a=0
for i = 1 to Sc do

if i == 2a then
a=a+1 B[i]=floor(Sc/2a)

end
else

B[i] = B[i− 1] + floor(Sc/2a−1)
end

end

Algorithm 1: Computing the balanced ordering of sub-chunks
for distribution

x : A sub-chunk with label: x, which is not distributed yet
y : A sub-chunk with label: y, which is already distributed
V : Ordering of sub-chunks in the vanilla approach

9 10 13 14 15 16 17 18 1912
1 2 3 4 5 6 7V:

12 34 5 7B:

B : Ordering of sub-chunks in the balanced approach

11

6

0 1 4 5 6 7 832

9 10 12 13 14 15 16 17 18 19110 1 3 4 5 6 7 82

Figure 2: Ordering of sub-chunks for distribution

Each node divides its chunk into sub-chunks based on the chunk-
factor. Let nc be the number of IDs in a chunk and ns represent the
number of IDs in each of its sub-chunks. In
a chunk, the lowest ID is assigned to the owner node and the re-
maining IDs are for further distribution. Thus nc−1 represents the
number of IDs in a chunk available for distribution by the owner
node. If the chunk factor is cf (0 ≤ cf ≤ 1) then ns would be
b(nc − 1)cf c. The number of sub-chunks (Sc) that can be created
from a chunk is bnc−1

ns
c + 1. This also represents the maximum

number of nodes that can be invited by a node having chunk of size
nc.

Let cf = 0.65 in this example. Node A divides its chunk into
nine sub-chunks where each sub-chunk has 57 IDs (the last sub-
chunk has 55 IDs). Node a1 joins the network after getting an in-
vitation from node A and A assigns a sub-chunk to a1. The lowest
ID in this sub-chunk is 1, which is assigned as a1’s ID, and the in-
terval [2, 57] represents the remaining IDs of the sub-chunk that are
for further distribution by a1. Another node a2 joins the network
through an invitation from A. Using cf = 0.65, both a1 and a2 di-
vide their chunks into five sub-chunks, where each sub-chunk has
13 IDs (the last one has four). Node a21 joins the network through
the invitation from node a2, which assigns it the ID 59. Nodes b1
and b11 join the network through the invitations from nodes B and
b1, respectively.

We assume that each node knows the value ofZ, b, and cf . Thus,
if a node assigns an ID from its chunk to a joining node, the joining
node can easily verify it, because any node in Persea can calculate
the chunk distribution.
Balanced ordering of sub-chunks. As shown at the top of Fig. 2,
if chunks are assigned in consecutive order, the distribution of ID
space will be uneven. To maintain reasonable load distribution, we
instead space out the chunk distribution as shown in the lower part
of Fig. 2.

More specifically, a node doles out each sub-chunk so as to di-
vide its chunk’s ID space into the most balanced distribution possi-
ble at each moment. Using Fig. 2, in which there are 20 sub-chunks,
the node will first allocate sub-chunk 10, which divides its ID space
in half between itself and its first child. Further allocations will be
to cut the total ID space into quarters (chunks 5 and 15), eighths
(chunks 2, 7, 12, and 17), and so on. More formally, a node issues
its chunks according to Algorithm 1.

4.2 Certification of IDs and Chunk Allocations
Persea employs a simple public key infrastructure to protect the

advantages of hierarchical ID distribution from fraudulent ID and
chunk ownership claims. In Persea, each node has a certificate,
signed by its parent in the bootstrap tree, containing its ID, its pub-
lic key, the parent’s ID, and the last ID of its chunk. The ID of the
node itself is the first ID of its chunk, and thus the chunk ranges
from the node’s ID to the last ID. The information in the certifi-
cate helps to prevent attacks based on fraudulent node creation. We
discuss the resilience of Persea to such attacks in §5.

To ensure that its certificate can be found, each node takes the
hash of its ID to get a target ID and publishes the certificate to
the Persea DHT, using replication (see §4.3). When node P con-
tacts node Q in the DHT, it validates Q’s ID as follows. First, it
uses the DHT to find Q’s certificate, which is signed by Q’s parent
Q1. Q1’s certificate is also obtained from the DHT, and the public
key it contains is used to verify Q’s certificate. Each replica that
stores Q’s certificate will also look up Q1’s certificate in the DHT
to prevent an attacker from storing fake certificates. Note that Q1’s
certificates have already been verified, and so on logically up to
the bootstrap node. The bootstrap node certificates themselves can
be distributed along with the P2P software or during the invitation
process.

Note that the Persea lookup for Q1’s certificate obtains all R
replicas. If there are any discrepancies between the replicas, P
can continue to look up additional ancestors in the bootstrap tree
up to the bootstrap node itself, if necessary. This provides re-
silience in the face of content poisoning attacks. If such attacks
are widespread as an annoyance, the lookups for ancestors can be
made probabilistic to avoid excessive overhead while still ensuring
that fraudulent ID claims are detected quickly.

By placing certificates in the DHT, we avoid relying too much on
the bootstrap nodes. When the system is first deployed, the boot-
strap nodes are highly trusted as being in charge of large chunks of
the ID space. After a number of peers have joined, however, much
of the ID space is allocated. If a bootstrap or other node is com-
promised, it may attempt to issue certificates for malicious peers in
space that has already been allocated. To prevent this, we propose
the following mechanism: Nodes who store a certificate for a peer
will not allow this certificate to be replaced by another node’s in-
formation. We expect that this rule can be made more flexible by
establishing consensus that a node has left the system or should be
expelled, but protocols for doing so are beyond the scope of this
paper.

4.3 Replication Mechanism
In this section, we describe our replication mechanism, which is

the key difference between the Persea DHT layer and Kademlia.
As with other DHTs, we calculate the key for a given (key, value)

pair by taking the consistent hash (e.g. SHA-1) of a search key,
such as a file name. The node with the closest ID to the key in
terms of the XOR of the key and the ID, interpreted as an integer, is
deemed to be the owner of the key and should store the (key, value)
pair. A lookup for the key should return this owner. In Persea,
we replicate each (key, value) pair over R owners that are evenly

Table 2: Topologies [MT: mixing time]

Network Abbrv. Nodes Edges MT

advogato adv 6551 51332 2.3

hamsterster ham 2426 16631 3.0

youtube ytub 15088 5574249 3.0

ca-AstroPh astro 18772 396160 8.0

flickr flic 80513 5899882 11.5

catster cat 149700 5449275 8.0

spaced over the circular ID space. Thus, even if a region is occu-
pied by the malicious peers, the redundant lookup operations can
retrieve the desired (key, value) pair from owners in other regions
of the network.

More specifically, when the initiator intends to store or retrieve
a (key, value) pair in Persea, it calculates the ID of the target nodes
as follows. Assume a b-bit ID space, such that nmax = 2b. We
virtually divide the ID space into R regions where each region
(except the last one) accommodates at most D = bnmax

R
c IDs,

and the last region has nmax − D × (R − 1) IDs. The interval
[D×r,D× (r+1)−1] for 0 ≤ r < R−1 represents the IDs that
are in the rth region; the last region spans [D×(R−1), nmax−1].
A node ID i is replicated to each other region by taking (i+D×r)
mod n for 1 ≤ r < R.

4.4 Routing Table Organization and Lookup
Our routing table organization and lookup mechanism follow

closely to the model of Kademlia [17], though we note that other
models could be followed. Here, we briefly describe the mecha-
nisms for completeness.
Routing table organization. In the DHT layer, each node main-
tains a routing table consisting of b node lists for a b-bit ID space.
Each list, or k-bucket, contains up to k entries, each of which con-
tains the IP address, port, ID, and public key of another node. The
ID of a node in the bth k-bucket of a node with ID i should share
the first b− 1 bits of i and have a different bth bit from i.
Lookup mechanism. To initiate a lookup(key) request, the query-
ing node contacts the α nodes in its k-buckets that are the closest
ones to the desired key. Each of the α nodes sends the initiator β
IDs from its k-bucket closest to the target node. If any of the β
nodes is found not alive, the next closest node to the desired key,
which is alive, is returned to the initiator. From the set of returned
IDs, the initiator selects α nodes for the next iteration. This process
is iterated until the target is found or no nodes are returned that are
closer than the previous best results.

In Persea, the initiator performs R such independent parallel
lookup operations and calculates the ID of the target nodes ac-
cording to the mechanism described in §4.3. When an owner is
found from any of R independent lookups, the initiator sends the
owner a message for either the store (put(key, value)) or retrieval
(get(key)) operation.

5. SECURITY ANALYSIS
In this section, we examine the possible avenues of attack against

Persea. We focus primarily on examining the resilience of Persea
against attacks on ID control.

5.1 Attacks on ID Control
An attacker could attempt to undermine Persea’s restrictions on

ID space. We now discuss these attacks and how Perseea is resilient
to them.

Note that our arguments for security against these attacks are
inductive: Starting from a small base of honest nodes, in which
lookups will succeed, additional nodes can be added according to
the rules of protocol without substantial risk that lookups will be
subverted as long as the ratio of attack edges to nodes remains mod-
erate (i.e. g/n ≤ 1.0) at all times. This assumption would only be
violated if the early adopters were particularly vulnerable to social
engineering.
Node insertion. In a node insertion attack, the attacker responds
to a lookup(key) request by pretending that there is a malicious
node with an ID that matches very closely to the key currently being
searched for and returning this node’s information. The attacker
creates a certificate with this ID and signs it with a plausible key
for a parent.

The certificate checks in Persea will cause this attack to fail. In
particular, the node that initiated the lookup(key) request will also
perform a lookup for the certificate of the returned node. The at-
tacker will not be able to store the certificate in the DHT, as the
replicas for the given ID will look up the parent’s certificate. Note
that the parent’s certificate similarly cannot be stored in the DHT
by the attacker. Additionally, the node ID must fit the fixed values
determined by Z, b, and cf (see §4.1). Each node can very simply
calculate whether a returned node ID fits these system-wide values.
Thus, the attacker’s certificate will fail to validate and the user can
use the other returned lookup results.
Node ID hijacking. In this attack, the malicious peer M falsely
claims to have the node ID of an existing honest peerH and sends a
request to a victim node V to insert this node ID into its k-bucket.
If effective, this attack would allow widespread poisoning of k-
buckets.

Persea is also resilient against this attack. A node cannot falsely
claim a node ID in Persea because of the certification mechanism
(§4.2). When node P requests node Q to add it to Q’s k-bucket,
node P has to show its certificate, which shows the actual node ID.

5.2 Other Attacks on DHTs
P2P systems, and DHTs in particular, are subject to a wide range

of attacks. As most of these are orthogonal to our approach, we
limit our discussion to the most salient issues.

Persea, being based on Kad, is subject to the eclipse attack, in
which routing tables are filled the attacker [26]. Any P2P system
must address this attack, but it is orthogonal to our design and can
be solved using existing techniques, such as the approach of Singh
et al. [24].

Index poisoning attacks, in which the attacker adds a large vol-
ume of invalid information into the DHT [15], are no more prob-
lematic in Persea than other DHTs, and can also be addressed with
existing approaches [16].

Denial of service (DoS) is another possible attack on DHTs. DoS
has minimal additional impact on our system beyond the impact on
other DHTs. Notably, DoS on bootstrap nodes does not prevent
nodes from joining, except through the targeted nodes, and does
not stop nodes from verifying any certificates, as these are stored in
a replicated manner in the DHT.

6. SIMULATION AND RESULTS
To evaluate Persea, we built a custom simulation of the proto-

col, including building the bootstrap tree and filling the ID space,
adding malicious peers via attack edges, and performing lookups
over the modified Kad overlay. In this section, we describe the de-
sign of our simulation and present the results of our experiments.

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

N
o

d
e

s
 (

th
o

u
s
a

n
d

s
)

Chunk Factor cf

ham
adv
flic
cat

ytub
astro

Figure 3: Effect of parameter cf on the number of nodes in the
system

 85

 90

 95

 100

 0 0.2 0.4 0.6 0.8 1

L
o

o
k
u

p
 s

u
c
c
e

s
s
 r

a
te

 (
%

)

g/n

ham
adv
flic
cat

ytub
astro

Figure 4: Lookup success rate for varying attack ratio g/n]

 95

 96

 97

 98

 99

 100

 0 0.02 0.04 0.06 0.08 0.1

L
o

o
k
u

p
 s

u
c
c
e

s
s
 r

a
te

 (
%

)

g/n

Persea
X-Vine (succ=20)
X-Vine (succ=10)

Figure 5: Comparison with X-Vine for R = 5

In all of our experiments, we simulate for a 31-bit ID space.
Unless otherwise specified, we use default system values of chunk-
factor cf = 0.65, redundancy R = 7, and Kad parameters α = 5,
β = 7, and bucket size k = 7. Although the redundancy param-
eters (R, α, and β) may seem high, we show in Section 6.2.4 that
the overheads for lookups are quite reasonable.

6.1 Building the Network and Joining of At-
tackers

To build the bootstrap tree, we emulate the process of nodes join-
ing via existing connections in a social network graph. Although
Persea does not rely on the structure of the social graph for its se-
curity properties, we use real social network graphs to provide a
realistic basis for the choices that nodes make in building the tree.

To show that Persea will work for a variety of underlying so-
cial networks, we evaluate over six different social networks2with
a range of mixing times. We evaluate Persea in simulations for
five social network datasets: advogato (adv), hamsterster (ham),
youtube (ytub), flickr (flic), and catster (cat), and one collaboration
network: ca-AstroPh (astro). ham, flic, ytub, and cat are social
networks drawn from users on the Hamsterster.com, Flickr.com,
Youtube.com, and Catster.com Websites, respectively. Table 2 shows
the sizes and mixing times of the network datasets. We measure the
mixing times of these networks by using the code and procedures

from Mohaisen et al. [20]; details are in the Appendix. Larger val-
ues show slower mixing times.

As we construct the initial boostrap graph, the nodes in these
datasets are considered to be honest. We build our system starting
with seven bootstrap nodes. In deployment, bootstrap nodes would
be the users who take initiative to build the system. In our exper-
iments, we choose seven highly connected nodes from the social
network to start building the network. We then use breadth-first-
search over the social graph to add other nodes. A link between
node P and node Q in the dataset is interpreted as an invitation
from node P to node Q. Thus, P becomes Q’s parent in the boos-
trap graph. Also, P and Q add each other to their k-buckets.

After adding all of the honest nodes, we add Sybil nodes by cre-
ating attack edges to randomly selected honest peers. An attack
edge represents an invitation from the honest node, providing the
attacker with a certified ID and chunk of ID space through which it
could invite more Sybil nodes. An attack edge can be created with
a benign peer from any level of the hierarhcial ID space.

One may think that the attacker is at a disadvantage by being
added after honest nodes build a bootstrap tree. This is not the
case. The attackers have an equal chance to get attack edges at all
levels of the tree, and there are always chunks to be given out at
the highest levels of the tree. To demonstrate this, we examined the
ratio of attack edges to honest nodes (g/n) in our simulations for
all levels of the ID space (see Table 3 for the results for g/n = 1.0
overall). The ratios are roughly equal across the levels. We note
that the ratios are actually greater than the overall ratio at the top
level for the two networks (cat and ytub) for which Persea has the
best lookup performance.
Maximizing the number of nodes. As the bootstrap graph is
built, Persea should allow any new node to join through any ex-
isting node who is a real social connection. This means that both
the number of IDs in each node’s chunk and the depth of the tree
should be large to prevent significant limitations on legitimate in-
vitations. These two numbers are balanced by the chunk factor
cf—a larger cf means larger chunks for each node, while a smaller
cf means a larger maximum tree depth. In Figure 3, we show this
trade-off for our ID space and our social network graphs in terms
of the maximum number of nodes in the system. Based on these
results, we use cf = 0.65 in our simulations to maximize the size
of the experiment.

Table 3: g/n in each level of hierarchical ID space [overall
g/n = 1.0]

Level ham adv flic cat ytub astro

1 0.91 0.95 1.17 1.10 1.15 0.95

2 0.96 1.10 0.96 0.97 0.93 0.98

3 1.01 1.03 0.97 0.97 0.97 0.99

4 0.98 1.04 0.95 0.97 0.95 1.03

5 1.00 0.93 0.97 0.97 1.00 1.03

6 1.16 0.95 0.98 0.98 − 1.04

7 0.94 − − 0.98 − 1.05

8 1.04 − − 1.11 − 0.93

2http://snap.stanford.edu/data,
http://konect.uni-koblenz.de,
http://socialcomputing.asu.edu/pages/
datasets

 90

 92

 94

 96

 98

 100

 0 10 20 30 40 50

L
o

o
ku

p
 s

u
cc

e
ss

 r
a

te
 (

%
)

Attackers per attack edge

ham
adv
flic
cat

ytub
astro

(a) Varying attackers per attack edge (g/n =
0.10)

 94

 95

 96

 97

 98

 99

 100

 0 2 4 6 8 10 12 14

L
o

o
k
u

p
 s

u
c
c
e

s
s
 r

a
te

 (
%

)

Node failure (%)

ham
adv
flic
cat

ytub
astro

(b) Varying percentage of node failure

 0

 20

 40

 60

 80

 100

 2 4 6 8 10

L
o

o
ku

p
 s

u
cc

e
ss

 r
a

te
 (

%
)

Redundancy R

ham
adv
flic
cat

ytub
astro

(c) Varying R (g/n = 0.50)

Figure 6: Lookup success rates in Persea. Note the different y-axis ranges.

6.2 Results
In this section, we justify our claims through the results of sim-

ulation. We also analyze the effects of changing parameters and
report the results for overhead.

6.2.1 Justification of claims
In this paper, we make the following claims about Persea:
• Claim I: Persea provides a high lookup success rate, even when

the ratio of attack edges to honest nodes is not small.
• Claim II: Persea works well for both fast- and slow-mixing so-

cial networks.
• Claim III: The hierarchical node ID distribution confines the

attackers in considerably smaller regions of ID space.
• Claim IV: The lookup success rate in Persea is not significantly

affected by varying the number of attackers per attack edge.
• Claim V: Even when a significant fraction of nodes fail simulta-

neously, lookups should still succeed.
Claims I and III-V all speak to Design Goal #1 of offering Sybil-
resistent lookups. Claim II concerns Design Goal #2 of not depend-
ing on the structure of the underlying social network. We justify our
claims through our simulation experiments.
Claim I. In Persea, we get a 100% lookup success rate for up to
g/n = 0.45 in a network of 149, 700 honest nodes (Figure 4).
When g/n = 1.0 in the largest network in our evaluation, Persea’s
lookup success rate is 95.6%. In comparison, X-Vine only shows
results for g/n up to 0.1, where the success rate is already below
100% [19]. We directly compare Persea with X-Vine in Figure 5,
which is limited to at most g/n = 0.07 using results from Mittal
et al. [19]. See the Appendix for details. Persea performs simi-
larly to X-Vine using 20 successors per node. Whānau has signif-
icantly lower success rates for g/n ≥ 0.15 [11] and can be ex-
panded to improve success rates at the cost of greatly increased
overheads [12].

Persea’s DHT is based on Kad, which originally did not have
any protections against the Sybil attack. Cholez et al. report that
recent versions of Kad clients (aMule and eMule) attempt to pro-
tect against Sybil attacks by restricting IP addresses from appearing
more than once in a node’s k-buckets [6]. This does not affect our
attacker, who we assume to have a large number of IP addresses,
e.g. by running a botnet. We evaluated Kad in our experiments as
well. For g/n = 0.1, the lookup success rate in Kad is 30% in
cat and 40% in flic, both much worse than Persea.
Claim II. For these experiments, we select six networks with mix-
ing times varying from 2.3 steps (fast-mixing) to 11.5 steps (slow-
mixing) (Table 2). Using the lookup results when g/n = 1.0,
we do find an inverse correlation between mixing time and lookup
success (r(4) = 0.60, p = 0.1). Though it is not statistically

significant, we do note that Persea performed the worst on two of
the slowest mixing graphs (flic and astro). It is possible that faster
mixing leads to better distribution of ID space among honest nodes,
though we have not investigated this in detail. Nevertheless, the
lookup results remain reasonable for these social networks. When
g/n = 0.5, Persea has a success rate of 96.2% on flic, the slowest
mixing graph, and 94.7% on astro.

In tables showing lookup overhead (Table 5, 6, and 7) and the
amount of attacker-controlled ID space (Table 4), we show the mix-
ing time in parentheses after the network name. Slower mixing net-
works also have higher overheads, though all overheads are quite
reasonable for all six networks. The amount of attacker-controlled
ID space does not seem to be correlated with mixing time.
Claim III. In Persea, the hierarchical node ID distribution limits
the attacker nodes to a small fraction of the ID space, even for a
significant number of attack edges. Table 4 shows the fraction of
ID space controlled by the attacker. Even for g/n = 1.0, no more
than 0.9% of the ID space is controlled by attacker nodes.
Claim IV. When an attacker joins the system, it can invite more
malicious nodes. However, the lookup success rate in Persea should
not be significantly affected by increasing the number of attackers
per attack edge, since the hierarchical node ID distribution limits
the attackers to isolated regions in the ID space. To test this, we
increase the number of attackers per attack edge from one to fifty,
which makes the number of attackers become 60% of total nodes in
the network. We keep g/n = 0.10 fixed. For example, the lookup
success rate is 99.5% in ytub and 99% in ham and cat when the
number of attackers per attack edge is 50 (Figure 6(a)). We see no
drops in performance in any network when the number of attackers
per attack edges grows above 25.
Claim V. We evaluate the performance of Persea under node fail-
ure. We are interested in the static resilience of our system, i.e., the
lookup success rate after a percentage of nodes in the system fail
simultaneously. This is a worst-case version of a system with churn

Table 4: Fraction of ID space occupied by the attackers for
varying g/n

g/n 0.10 0.50 0.80 1.0

adv (2.3) 0.0004 0.001 0.002 0.003

ham (3.0) 0.0005 0.0006 0.001 0.002

ytub (3.0) 0.001 0.004 0.006 0.007

astro (8.0) 0.0003 0.001 0.002 0.003

flic (11.5) 0.001 0.005 0.007 0.009

cat (8.0) 0.0007 0.003 0.006 0.007

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9

Lo
ok

up
 s

uc
ce

ss
 r

at
e

(%
)

ham
adv
flic
cat

ytub
astro

(a) Nodes queried α

 75

 80

 85

 90

 95

 100

 2 4 6 8 10

Lo
ok

up
 s

uc
ce

ss
 r

at
e

(%
)

ham
adv
flic
cat

ytub
astro

(b) Nodes returned β

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10

Lo
ok

up
 s

uc
ce

ss
 r

at
e

(%
)

ham
adv
flic
cat

ytub
astro

(c) k-bucket size
Figure 7: Lookup success rate for varying Kad-based system parameters [g/n = 0.50]

100 102 104 106 1080

0.2

0.4

0.6

0.8

1

ID Space (Log Scale)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

 Vanilla
 Balanced

Figure 8: Empirical CDF of ID ownership in the catster net-
work

in which the nodes fail and routing updates have not yet propagated
to any peers. Figure 6(b) depicts the lookup success rate as a func-
tion of the percentage of nodes that fail simultaneously, averaged
over 10, 000 lookups. The results show that the lookup success rate
remains 100% in the largest network of our evaluation, even when
10% of nodes fail. We do not add any malicious peers during this
experiment. In Figure 9 (in the Appendix), we present the results
of an experiment in which we vary the percentage of node failure
and have attackers, with g/n = 0.1.

6.2.2 Varying system parameters
We now examine the effect of changing the key system parame-

ters. When we increase redundancy R, nodes will store each (key,
value) pair in more nodes and consequently lookup the key in more
nodes. Thus, a larger value of R will result in better lookup perfor-
mance at the cost of greater overheads. In Figure 6(c), we see that
success rates appear to level off at R = 7. When β is increased,
more nodes are returned to the source by each of α nodes in an
iteration. We get the maximum lookup success rates for α = 5
(Figure 7(a)) and β = 7 (Figure 7(b)). For a large number of at-
tackers, higher values of α and β may increase the probability of
selecting more malicious nodes in each iteration. We also examine
settings for the bucket size k. We get seven as the optimal value for
k with these settings (Figure 7(c)). The lookup success rate may
decrease for higher values of k, since it means that routing tables
can hold more attackers.

Table 5: Lookup Overhead [g/n = 1.0]

Network Msgs (R lookups) hop count (1 lookup)

adv (2.3) 21.65 3.09

ham (3.0) 18.87 2.69

ytub (3.0) 19.27 2.75

astro (8.0) 26.63 3.80

flic (11.5) 25.90 3.70

cat (8.0) 24.36 3.48

6.2.3 ID ownership distribution
We now examine the distribution of IDs across nodes. Figure 8

shows the distribution of IDs when using cat, the largest network on
which we tested. In vanilla Persea, with in-order ID distribution,
some nodes own 11.4% of the ID space. With our balanced ap-
proach, however, no node owns more than 0.077% of the ID space.
The balanced approach provides much more even distribution of
IDs to the peers.

6.2.4 Overheads
We now discuss how our system meets Design Goal #4 of hav-

ing moderate overheads. One overhead in DHTs is maintaining
routing tables due to churn, e.g. by using heartbeat messages. Mit-
tal et al. report that Whānau has an average routing table size of
20,000 in a network of 100,000 nodes, leading to very high mainte-
nance costs [19]. In our experiments, however, Persea systems had
between 10.1 and 68.1 routing table entries per node for different
networks. This suggests moderate maintenance costs and is in line
with other DHTs, including X-Vine.

Another overhead is in lookup costs, as measured by the number
of messages and the hop count, the number of nodes required to
reach a lookup target. In Persea, the certificate of a peer is stored
in R nodes in the DHT, and the source retrieves them for vali-
dation by using the lookup mechanism (§4.4). Thus, the lookup
overhead shown in Table 5 also includes the overhead for the re-
trieval of the certificates of a node. The number of messages is
quite reasonable at less than 27 in all cases. As for hop count, Ta-
ble 5 shows that the average hop count in Persea is low, e.g., 3.48
for g/n = 1.0 in the 149,700-node cat network. In contrast, for
topologies with 100, 000 nodes, X-Vine requires 10-15 hops for
routing [19]. Whānau has a fixed hop count of two.

Increasing the rate of node failure does not greatly increase the
average hop count and messages during lookup in Persea. Results
(shown in Table 6 in the Appendix) show that for 15% node fail-
ure in the largest network in our evaluation, the average hop count
per lookup increases by only 0.31. Finally, we find that increasing
the number of attackers per attack edge has a small impact on the
lookup overhead in Persea, as shown in Table 7 (in the Appendix).

7. CONCLUSION
Persea leverages the social relationships among honest peers to

build a Sybil-resistant DHT that does not depend on the assump-
tions of a fast-mixing social network and a small number of attack
edges. Persea also provides resilience against attacks (denial of ser-
vice, node ID hijacking, and node insertion) launched by attacker
nodes.

We see Persea as a first step in exploring mechanisms for using
one’s social network as an identifier and leveraging that for secu-
rity. It is well known that social network information is strongly
identifying [21], but it is non-obvious as to how we can convert

this information into a usable identifier. The bootstrap tree is one
approach to this, and the effectiveness of Persea suggests to us that
this broader idea has significant potential and should be further ex-
plored.

8. ACKNOWLEDGMENTS
We thank our shepherd Aziz Mohaisen and the anonymous re-

viewers for their detailed comments and feedback. We also thank
Aziz Mohaisen for providing code and assistance for measuring
mixing times of social networks. This material is based upon work
supported by the National Science Foundation under Grant No.
CNS-1117866 and CAREER award number CNS-0954133.

9. REFERENCES
[1] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, and

A. Panconesi. SoK: The evolution of Sybil defense via social
networks. In IEEE S&P, 2013.

[2] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,
D. Moon, and S. Shenker. Accountable Internet Protocol
(AIP). ACM SIGCOMM Computer Communication Review,
38(4):339–350, 2008.

[3] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All your
contacts are belong to us: Automated identity theft attacks on
social networks. In WWW, 2009.

[4] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu.
The socialbot network: when bots socialize for fame and
money. In ACSAC, 2011.

[5] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu.
Design and analysis of a social botnet. Computer Networks,
57(2):556–578, 2013.

[6] T. Cholez, I. Chrisment, and O. Festor. Evaluation of Sybil
attacks protection schemes in KAD. In AIMS, 2009.

[7] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and
R. Anderson. Sybil-resistant DHT routing. In ESORICS,
2005.

[8] G. Danezis and P. Mittal. SybilInfer: Detecting Sybil nodes
using social networks. In NDSS, 2009.

[9] J. R. Douceur. The Sybil attack. In IPTPS, 2002.
[10] D. Irani, M. Balduzzi, D. Balzarotti, E. Kirda, and C. Pu.

Reverse social engineering attacks in online social networks.
In DIMVA, 2011.

[11] C. Lesniewski-Laas. A Sybil-proof one-hop DHT. In
Workshop on Social Network Systems, 2008.

[12] C. Lesniewski-Laas and M. F. Kaashoek. Whānau: A
Sybil-proof distributed hash table. In USENIX NSDI, 2010.

[13] B. Levine, C. Shields, and N. Margolin. A survey of
solutions to the Sybil attack. Technical Report 2006-052,
University of Massachusetts Amherst, 2006.

[14] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li.
An empirical study of collusion behavior in the Maze P2P
file-sharing system. In IEEE ICDCS, 2007.

[15] J. Liang, N. Naoumov, and K. W. Ross. The index poisoning
attack in P2P file sharing systems. In INFOCOM, pages
1–12, 2006.

[16] X. Lou and K. Hwang. Prevention of index-poisoning DDoS
attacks in peer-to-peer file-sharing networks. Technical
Report TR-2006-5, USC Internet and Grid Computing Lab,
November 2006.

[17] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information sytem based on the XOR metric. In IPTPS,
2002.

[18] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. ACM
SIGOPS Operating Systems Review, 33(5):124–139, 1999.

[19] P. Mittal, M. Caesar, and N. Borisov. X-Vine: Secure and
pseudonymous routing in DHTs using social networks. In
NDSS, 2012.

[20] A. Mohaisen, A. Yun, and Y. Kim. Measuring the mixing
time of social graphs. In ACM IMC, 2010.

[21] A. Narayanan and V. Shmatikov. De-anonymizing social
networks. In IEEE S&P, 2009.

[22] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and
S. Shenker. A scalable content-addressable network. In ACM
SIGCOMM, 2001.

[23] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems. In Middleware, 2001.

[24] A. Singh, M. Castro, P. Druschel, and A. Rowstron.
Defending against eclipse attacks on overlay networks. In
ACM SIGOPS European Workshop, page 21. ACM, 2004.

[25] M. Sirivianos, X. Yang, and T. Pregueiro. Aiding the
detection of fake accounts in large scale social online
services. In USENIX NSDI, 2012.

[26] M. Steiner, T. En-Najjary, and E. W. Biersack. Exploiting
kad: possible uses and misuses. ACM SIGCOMM Computer
Communication Review, 37(5):65–70, 2007.

[27] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In ACM SIGCOMM, 2001.

[28] N. Tran, J. Li, L. Subramanian, and S. S. Chow. Optimal
Sybil-resilient node admission control. In IEEE INFOCOM,
2011.

[29] B. Viswanath, M. Mondal, A. Clement, P. Druschel, K. P.
Gummadi, A. Mislove, and A. Post. Exploring the design
space of social network-based Sybil defenses. In
COMSNETS, 2012.

[30] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove. An
analysis of social network-based Sybil defenses. In ACM
SIGCOMM, 2010.

[31] W. Wei, F. Xu, C. C. Tan, and Q. Li. SybilDefender: Defend
against Sybil attacks in large social networks. In IEEE
INFOCOM, 2012.

[32] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y.
Zhao. User interactions in social networks and their
implications. In Eurosys, 2009.

[33] S. Wolchoky, O. S. Hofmanny, N. Heninger, E. W. Felten,
J. A. Halderman, C. J. Rossbach, B. Waters, and E. Witchel.
Defeating Vanish with low-cost Sybil attacks against large
DHTs. In NDSS, 2010.

[34] M. Yang, Z. Zhang, X. Li, and Y. Dai. An empirical study of
free-riding behavior in the Maze P2P file-sharing system. In
IPTPS, 2005.

[35] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and
Y. Dai. Uncovering social network Sybils in the wild. In
ACM IMC, 2011.

[36] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. SybilLimit:
A near-optimal social network defense against Sybil attacks.
In IEEE S&P, 2008.

[37] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
SybilGuard: Defending against Sybil attacks via social
networks. In ACM SIGCOMM, 2006.

 90

 92

 94

 96

 98

 100

 0 2 4 6 8 10 12 14

L
o

o
k
u

p
 s

u
c
c
e

s
s
 r

a
te

 (
%

)

Node failure (%)

ham
adv
flic
cat

ytub
astro

Figure 9: Lookup success rate for varying percentage of node
failure [g/n = 0.10]

APPENDIX
A. ADDITIONAL RESULTS
Measuring Mixing time. Mixing time represents the number of
steps required by a random walk to approach the uniform distri-
bution [20]. We measure the mixing time of networks used in our
simulation by using the codes and methodology provided by the
authors of [20], where the walk length at total variation distance
0.1 represents the lower bound of the mixing time of a network.
To measure the mixing time for large networks (e.g., flic and cat),
we adopt the sampling technique described in [20] to get 25, 000
nodes for each network. For other networks, we use the largest
connected component to measure mixing time. Our results (see
Table 2) show that flic, cat, and astro are relatively slow-mixing
compared to ham, adv, and ytub networks.
Results for node failure (g/n = 0.1). We evaluate for varying
percentage of node-failure having g/n = 0.1, where n represents
the number of total benign peers (alive+failed). For this experi-
ment, we consider that only benign peers fail in the system. Fig-
ure 9 illustrates the results. We find that 99% lookups still succeed
in Persea, when 10% fail in a network of 149, 700 nodes.
Results for the distribution of g/n. For g/n = 1.0 in the whole
network, Table 3 shows the distribution of this ratio over different
levels of hierarchical ID space. Here, flic has six levels and other
networks have eight levels in their hierarhcial ID space (see §6 for
a detailed explanation).
Additional overhead results. Table 6 compares the amount of
overhead for a Persea system with no failures and one with 15%
node failures, which should be considered high. We show both total
messages and hop count. The number of messages increases in the
high failure rate scenario by an average of 2.8 forR = 7 redundant
lookups across our social networks. The hop count increases by an
average of 0.41.

Table 7 compares the amount of overhead for a Persea system
with one attacker per attack edge and 10 attackers per attack edge.
When averaged across our social networks, the total number of
messages increases by 1.4 for R = 7 redundant lookups and the
hop count increases by 0.2.

Comparison with X-Vine. We compare Persea and X-Vine in
terms of lookup success rate and overhead, where the results for X-
Vine are taken from [19] and then we perform simulation on Persea
for the same dataset (New Orleans Facebook Friendship Graph) and
parameter (R = 5). The number of nodes and edges in this inter-
action graph are 63731 and 1545686, respectively. However, in
X-Vine [19] the number of nodes and edges are reduced to 50150
and 661850, respectively through pre-processing. So, while com-
paring Persea and X-Vine (see Figure 5), for each value of g/n the
number of attack edges are different for the two systems. In our
comparison, for X-Vine we consider two values (10 and 20) as the
number of successors.

The results for lookup success rate are shown in Figure 5 (see
§6.2), where we find that Persea performs very similarly to X-Vine
for the given parameters. The mean lookup path length in Persea is
found less than that in X-Vine, where for R = 5 the mean lookup
path lengths for X-Vine are 13.7 (succ=10) and 10.7 (succ=20),
and for Persea the mean lookup path length is 4.4.

Table 6: Overhead for Node Failure

Overhead Avg. Messages Avg. Hop-Count
in R Lookups in each of R Lookups

Failure (%) No Failure 15% No Failure 15%
adv (2.3) 18.61 20.78 2.65 2.96

ham (3.0) 15.32 20.83 2.19 2.98

ytub (3.0) 17.43 18.25 2.49 2.61

cat (8.0) 22.54 24.71 3.22 3.53

astro (8.0) 23.65 26.55 3.37 3.79

flic (11.5) 23.2 25.04 3.31 3.57

Table 7: Overhead for Varying Attackers per Attack Edge
[g/n = 0.10]

Overhead Avg. Messages Avg. Hop-Count
in R Lookups in each of R Lookups

Attackers per 1 10 1 10

attack edge

adv (2.3) 18.72 19.95 2.67 2.85

ham (3.0) 15.41 17.04 2.20 2.43

ytub (3.0) 18.25 18.40 2.60 2.63

astro (8.0) 23.73 26.02 3.39 3.71

flic (11.5) 23.3 25.29 3.32 3.61

cat (8.0) 22.66 23.87 3.23 3.41

