
 Making Findbugs More Powerful
 Mahdi Nasrullah Al-Ameen, Md.Monjurul Hasan, Asheq Hamid
 Department of Computer Science and Engineering
 University of Texas at Arlington
 Arlington, TX, USA
 {mahdi.al-ameen, mdmonjurul.hasan, asheq.hamid}@mavs.uta.edu

Abstract—To find bugs in software, a number of
automated techniques have been developed over
years. In recent years the research on finding bugs
are being considered with utter importance as the
automated detection of bugs plays a momentous role
to minimize the cost of testing software. Findbugs is a
widely used bug finding tool for java that supports
plug-in architecture for adding new bug detectors.
We have explored the already detected bug patterns
and noticed that there are a number of bug patterns
that are yet not detected by findbugs. Thus, our
research is a momentous step to make findbugs more
reliable and effective. We have written bug detectors
to detect 8 different bug patterns. Our analysis and
experiments have identified 4 bug patterns that are
never detectable by findbugs. We have tested our bug
patterns with PMD and have found that PMD cannot
detect those bug patterns that our bug detectors can
detect. We have run a number of popular
applications to test the effectiveness of our bug
detectors and our results show that our detectors can
successfully detect the bug patterns they aim for and
the percentage of false positive, reported by our
detector is 15.45% that is much less than the
percentage of false positive reported by findbugs.

Keywords. Static Analysis; bug finding tools; findbugs.

 I. Introduction

Now-a-days, automated techniques to detect bugs
in software are becoming popular to ensure the
quality of software at optimized cost. In recent
years, researchers have deeply focused on
improving the automated bug finding tools that are
being used in many industries and organizations.
Some of the techniques proposed in the research,
require sophisticated program analysis.

Java is a popular programming language and the
bugs in a Java program are worthwhile to be
detected. Findbugs is the popular bug finding tool
for Java; as of September 2006, the official website
of findbugs had 270,000 downloads of their bug
finding tool [6]. A number of popular companies
and industries are currently using findbugs but not
all of them give permissions to reveal their
identities publicly. ITA Software, Glassfish,
ObjectLab, Sleepycat Software are few of those,
who have publicly stated that they use findbugs [6].
Realizing the widespread popularity of findbugs,
many prominent companies, organizations and

institutions are providing financial support for
research on findbugs. Google, Sun Microsystem,
SureLogic, National Science Foundation,
University of Maryland are few of those
mentionable names in this respect [6].

Findbugs uses static analysis to inspect java
bytecode (compiled class file) for occurrences of
bug patterns. A bug pattern is a code idiom that is
often an error. The common reasons that may lead
to the occurrences of bug patterns in a program
include difficult language features, misunderstood
API methods, misunderstood invariants when code
is modified during maintenance, use of the wrong
boolean operator. Findbugs does not need to have
the source code as it does static analysis on
bytecode. Also it does not need to execute the
program that makes the tool very easy to use.
Because its analysis is sometimes imprecise,
FindBugs can report false warnings, which are
warnings that do not indicate real errors. In
practice, the rate of false warnings reported by
FindBugs is less than 50% [6].

Findbugs supports plug-in architecture that allows
anyone to add new bug detector. We have explored
the bug patterns that are already detected by
findbugs. The open source community on findbugs
is constantly working to make findbugs more
powerful. We have investigated the bug patterns
that they have detected to make sure we are not
being wasteful with time in detecting a bug pattern
that is already detected by the findbugs community.

On going through the already detected bug
patterns, we have surprisingly noticed that though
findbugs can detect many complex bug patterns but
there are many bug patterns, that seem simple, but
yet not detected by findbugs. Exploring such
weakness of this popular bug finding tool, we have
decided to create bug detectors for those bug
patterns, before we go for detecting more complex
bug patterns. Thus, our research is a very important
step to make findbugs more reliable and effective.
Our analysis and experiments have identified a
number of bug patterns that are never detectable by
findbugs. We have revealed these
weaknesses/limitations of findbugs that are
inherent from its principle of using bytecode for

978-1-4244-9698-3/11/$26.00 ©2011 IEEE

detection. We believe, it is worthwhile to explore
its weakness before we step further for making
findbugs more powerful.

 II. Detected Bug Patterns

We have detected 8 different bug patterns by using
our bug detectors that are yet not detected by
findbugs. In this section, we will discuss those bug
patterns with corresponding examples.

A. Zero length Array

The array, declared with length zero cannot be used
to store any data. Figure 1 shows an example of
this kind of bug pattern.

 int[] zero1 = new int[0];

Figure 1

B. Negative length Array

When an array is declared with negative length, it
carries no meaningful uses in the program. An
example of this bug pattern is illustrated in figure
2.

 int[] zero2 = new int[-5];

Figure 2

C. Divide by zero

Findbugs performs static analysis to detect bug
patterns and hence does not get the values of the
variables in an expression, that come from the
user’s input in run time. Considering the limitation,
to detect ‘Divide by zero’ bug pattern, we have
focused on constants that are already defined in the
code segment. An example is shown in figure 3.

 int a, b = 9,c = 3;

 a = b / (b%c);

 Figure 3

D. Integer Overflow

Referring to the fact, described in section C, we
have focused on defined constants to detect
‘Integer Overflow’ bug pattern.

 int a2 = 1234567809, b2 = 1234567890;
 int c2 = a2 + b2;

Figure 4

E. Out of bound array indexing

As we find in figure 5, the value of the variable b5
becomes negative while being used for array
indexing. It leads to the occurrence of ‘Out of
bound array indexing’ bug pattern.

 int[] a5 = new int[5];
 int b5 = 0 ;
 int c5 = a5[--b5];

 Figure 5

F. Probable out of bound array indexing

When array.length library function is used in the
initialization (figure 7) or in condition checking
(figure 6) of a loop, the probability arises to use the
value of the length of array as the array-index
inside the loop. Thus we have safely used the term:
‘probable’ to give warning for out of bound array
indexing.

 int[] array2 = new int[5];
 int b7;
 for(int i = 0 ; i<=array2.length; i++){}

 Figure 6

 int[] array9 = new int[5];
 int b9;
 for(int i = array9.length ; i>=0; i--){}

Figure 7

G. Never executed for loop

Figure 8 and 9 illustrate the scenario in which a
loop will be never get executed. It is not expected
in a program and our bug detector successfully
identifies the bug pattern.

 for(int i = 2; i <= 1 ; i++){}

 Figure 8

for(int i = 2; i = = 1 ; i++){}

 Figure 9

H. Unexpected behavior of loop

The loop, illustrated in figure 10 starts from the
initialized value of i = 2 and as the value is
decreasing, walking through the whole range of
negative values of a integer variable, it becomes
positive and the loop terminates when the value of i
becomes 4. Usually, such iteration in a loop is
unexpected and from our experiences, we have
never seen such a logic formation through a loop.
Another example is focused on figure 11. In both
cases, the warnings are generated for the
unexpected behavior of loop.

 for(int i = 2; i <= 3 ; i--){}

 Figure 10

 for(int i = 2; i >= 1 ; i++){}

 Figure 11

 III. Bug Patterns: Never Detectable
 by findbugs

We have figured out a number of bug patterns, that
are never detectable through byte code analysis. As
for example, leading zeros (figure 12) are not
apparent in the bytecode and thus, ‘needless
leading zeros (unless it is an octal value)’ bug
pattern cannot be detected by findbugs.

int a4 = 00023;

Figure 12

If-else blocks should be within curly braces. From
figure 13, considering the indentation, user may
expect, else clause corresponds to the first if clause,
but according to the language grammar, it
corresponds to the second if clause. The
programmer might believe this code will result in
x=4 but it actually results in x=5. Findbugs can
never detect this bug pattern as the curly braces in a
source code cannot be figured out from the
corresponding bytecode.

int x = 5, y = 3;
 if(x = = y)

if (y= =3)
x=3;

 else
x = 4;

Figure 13

In the bug pattern, illustrated in figure 14, the user
might expect to see four: 4 as output. But actually
it shows four: 22. The code will show the desired
output if the addition of numerical values is done
within parenthesis. In this case, the bytecode does
not contain any parenthesis but only the resolved
values (i.e. 22). Thus the findbugs cannot detect
this bug pattern as from the byte code analysis, it is
impossible to guess the expected output.

 String four = "four: " + 2 + 2;
System.out.println(four);

Figure 14

From the code snippet in figure 15, the user might
expect to get a6 = 7 as the output, but in reality the
output is a6 = 5. User should write “a6+=5” to get
the desired output. The bytecodes generated for a6
= 5 and a6 =+ 5 differ no way. So, from bytecode
analysis, it is not possible to detect if the user
intends to do the addition and mistakenly puts the
‘+’ operator on the wrong side of ‘=’ operator.

 int a6 = 2;
 a6 =+ 5;

System.out.println(a6);

 Figure 15

 IV. Results and Analysis

A. Comparing with PMD:

PMD is another popular bug finding tool for java
that works on source code to detect bug patterns.
We have written bug detectors for 8 different bug
patterns that the findbugs cannot detect. From
experiments we have found that PMD also cannot
detect these bug patterns. So, the bug patterns we
have worked on are worthwhile to be detected and
our research have essentially made findbugs more
powerful and effective, in comparison to PMD.

We have identified 4 different bug patterns that
findbugs can never detect. In this case, PMD can
detect ‘needless leading zeros’ and ‘if statements
without curly braces’ bug patterns. It is not
surprising, as PMD analyzes the source code, it is
possible to identify a if statement without curly
braces and also the unnecessary leading zeros at the
beginning of a literal (unless it is an octal value).

B. Effectiveness of our Bug Detectors:

We have tested our bug detectors for different
applications and the result is outlined in table 1.
From analysis we find that our bug detectors can
successfully detect the bug patterns they aim for.
and the average percentage of false warning is
15.45%. The percentage of false warning reported
by findbugs is 50% [6]. So, our bug detectors
make a significant contribution to reduce the
percentage of false warning of findbugs.

Applications Detected
bugs

Percentage of
False
Positive

jboss-osgi-installer-
1.0.0.Beta10

37 21.62%

android-sdk_r10-
linux_x86.tgz

873 13.75 %

Spring-security-2.0.4
42

2.38%

hibernate-distribution-
3.6.3.final

84

26.19 %

jEdit-4.3.2
30

13.33 %

 Table 1: Effectiveness of our Bug Detector

 V. Related Work

In recent years, researches on findbugs have got a
boost because of its increasing popularity and
effectiveness. In [3], a number of bug patterns have
been identified that are found in several widely
used applications and libraries. The obvious and
embarrassing nature of bugs, detected in [3] greatly
convinces the researchers for wider adoption of
automatic bug finding tools. In [4], five bug finding
tools, including findbugs are applied to a variety of
Java programs. Experimental results in [4] show
that the tools often find non-overlapping bugs. The
authors have proposed a meta-tool that combines
the output of the tools together.

In [2], authors focus on using findbugs in
production software development environments
including Sun’s JDK, Eclipse and portions of
Google’s Java code base. Google conducted a
company wide FindBugs “fixit" in 2009, where
hundreds of engineers worked on thousands of
FindBugs warnings. They fixed and fled reports
against many of those bug patterns. In [1], authors
have discussed the learning from this exercise and
have analyzed the resulting dataset. In [5] authors
have discussed on bug finding tools (findbugs,
PMD, QJ Pro) for Java with reviews and tests.
They have found that the bug patterns, detected by
bug finding tools are the subset of bug patterns,
found through review. They have also figured out
that dynamic tests detect bug pattern that are
completely different than the bug patterns, detected
by bug finding tools.

 VI. Future Work and Conclusion

We are working on findbugs with motivation of
making the tool more powerful. In our research, we
have successfully detected 8 different bug patterns
that the findbugs cannot detect. We have created
corresponding plug-ins to be accommodated with
the findbugs that will essentially make findbugs
more effective and reliable. Our identified bug
patterns that findbugs can never detect are
worthwhile in the research on findbugs. In our
future work, we will focus on more complicated
bug patterns.

 REFERENCES

[1] Nathaniel Ayewah, William Pugh, “The Google
FindBugs Fixit”, published in the Proceedings of
ISSTA’10, 19th international symposium on
Software testing and analysis ,2010.

[2] Nathaniel Ayewah, WilliamPugh, J. David
Morgenthaler, John Penix, “Using FindBugs On
Production Software”, published in the Proceedings
of OOPSLA '07, Companion to the 22nd ACM

SIGPLAN conference on Object-oriented
programming systems and applications companion,
2007.

[3] David Hovemeyer and William Pugh, “Finding
Bugs is Easy”, published in the Proceedings of
ACM SIGPLAN, Vol. 39, Issue 12, 2004.

[4] Nick Rutar, Christian B. Almazan, Jeffrey S.
Foster, “A Comparison of Bug Finding Tools for
Java”, published in the Proceedings of the ISSRE
'04, 15th International Symposium on Software
Reliability Engineering, 2004.

[5] Stefan Wagner, Jan Jurjens, Claudia Koller, and
Peter Trischberger, “Comparing Bug Finding Tools
with Reviews and Tests”,
http://www.springerlink.com/content/l9y49kxlpu3r
e752/

[6] http://findbugs.sourceforge.net/

[7] http://fb-contrib.sourceforge.net/

