
Persea: A Sybil-Resistant Social DHT

Mahdi N. Al-Ameen
The University of Texas at Arlington

Arlington, TX, USA
mahdi.al-ameen@mavs.uta.edu

Matthew Wright
The University of Texas at Arlington

Arlington, TX, USA
mwright@cse.uta.edu

ABSTRACT
P2P systems are inherently vulnerable to Sybil attacks, in
which an attacker can have a large number of identities and
use them to control a substantial fraction of the system.
We propose Persea, a novel P2P system that is more ro-
bust against Sybil attacks than prior approaches. Persea
derives its Sybil resistance by assigning IDs through a boot-
strap tree, the graph of how nodes have joined the system
through invitations. More specifically, a node joins Persea
when it gets an invitation from an existing node in the sys-
tem. The inviting node assigns a node ID to the joining node
and gives it a chunk of node IDs for further distribution. For
each chunk of ID space, the attacker needs to socially en-
gineer a connection to another node already in the system.
This hierarchical distribution of node IDs confines a large
attacker botnet to a considerably smaller region of the ID
space than in a normal P2P system. Persea uses a repli-
cation mechanism in which each (key,value) pair is stored
in nodes that are evenly spaced over the network. Thus,
even if a given region is occupied by attackers, the desired
(key,value) pair can be retrieved from other regions. We
compare our results with Kad, Whanau, and X-Vine and
show that Persea is a better solution against Sybil attacks.

Categories and Subject Descriptors
C.2.4 [Communication Networks]: Distributed Systems-
Distributed applications

Keywords
Sybil attack, security, social DHT

1. INTRODUCTION
Peer-to-peer (P2P) systems are highly susceptible to Sybil

attacks, in which an attacker creates a large number of
pseudonymous entities and use them to gain a dispropor-
tionately large influence over the system [1,2]. Such attacks
have been shown to be quite problematic in structured P2P
systems in which nodes are placed into a distributed hash
table (DHT) like Kademlia [8], which is widely used in file-
sharing systems.

Recent research has focused on leveraging information from
social networks to make the system robust against Sybil at-
tackers, resulting in several decentralized apporaches [6, 7,

Copyright is held by the author/owner(s).
CODASPY’13, February 18–20, 2013, San Antonio, Texas, USA.
ACM 978-1-4503-1890-7/13/02.

13]. In these defenses, it is often required that the social
network be fast-mixing, meaning that a random walk in the
honest part of the network approaches the unifrom distri-
bution in a small number of steps. However, a recent study
shows that the mixing times of real-world social networks
may not be as fast as what these approaches assume [10].
Further, Viswanath et al. have shown that a number of
Sybil defenses are ineffective for these slower-mixing, highly
modular social networks [12].

Contributions. In this paper, we propose a new Sybil-
resistant DHT called Persea that addresses these problems
and provides better Sybil resistance than the state of the
art. The Persea approach offers a number of important ad-
vantages over existing schemes:
• A Sybil attacker is limited to isolated regions of the ID

space.
• Our system does not depend on the assumption that the

social networks are fast-mixing, making Persea more de-
pendable in real-world scenarios.
• Building a bootstrap tree is more realistic than assum-

ing that the clients have access to lists of social network
connections from a system like Facebook; such lists may
also bear little resemblence to social connections inside
the P2P system.
• Although we test it with a DHT routing table design sim-

ilar to Kademlia, which is widely used, it can be adapted
to other DHT routing tables.
• IDs are certified, making attacks based on ID forging im-

possible outside of attacker-controlled ID ranges.
Our simulation results show that Persea performs much

better than Kad [3] in terms of lookup success-rates, e.g.
with 100% success compared to just 59.3% when the ratio
of attack edges to honest nodes is 0.15. In Whānau [6,7] and
X-Vine [9], the success rates are less than 100% for similar
scenarios.

2. SYSTEM DESIGN
In this section, we describe the design of Persea. We begin

with a brief attack model. We then overview the system
and address ID space allocation, ID certification, and key
replication. Persea uses the routing table organization and
lookup mechanism of Kademlia [8].

Attack Model. A link between an honest node and a
malicious node is called an attack edge, and it represents a
successful act of social engineering to cause the user to ac-
cept the malicious node as a social connection [7, 13]. In
Persea, creating an attack edge means obtaining an invita-
tion to join the network as a child of the inviting node in the

169



A (ID : 0) B (ID : 512)

a2 (ID : 58)a1 (ID : 1) b1 (ID : 513)

a21(ID : 59) b11(ID : 514)

0 511 512 1023

1 57 58 114 ... ...457 511 513 569 570 626 969 1023

59 71 514 526

A's chunk B's chunk

a1's chunk a2's chunk Yet not 
assigned

Yet not 
assigned

Yet not 
assigned

a21's chunk b11's chunk

b1's chunk

Figure 1: Hierarchical Distribution of Node IDs

bootstrap tree. When an attacker joins the network, it gets
a chunk of node IDs for further distribution and may invite
more attacker nodes to join the network. During lookup,
when the attacker gets a request to return the value associ-
ated with the search-key, it simply drops the message and
does not reply as part of a denial of service attack.

2.1 Design Overview
Persea consists of two layers: the bootstrap layer and the

DHT layer. In this paper, an edge refers to a link between
two nodes in the DHT layer. The bootstrap network and
DHT are simultaneously built starting with a set of boot-
strap nodes. The bootstrap nodes are the initiators of the
system. They are connected to each other in both the social
network and the DHT. Node IDs in the DHT are assigned to
the bootstrap nodes such that they are evenly spaced over
the circular ID space. Thus, the ID space of the DHT is
divided into one region for each bootstrap node.

A new peer must join the Persea system through an invi-
tation from an existing node in the network. In general, it is
expected that a node that is invited is socially known to the
inviting peer. When a node is invited, it not only becomes
a part of the bootstrap network but also gets a node ID in
DHT layer. The new node gets a chunk of node IDs that
it can use to invite more nodes for joining the network. ID
assignments and chunk allocations are put into certificates
signed by the parent nodes, and certificates are stored in the
DHT itself to allow for reliable distributed checking of the
chain of certificates all the way up to the boostrap nodes.

The number of nodes that a peer can invite is limited
by the number of node IDs in its chunk. Thus, there is an
incentive for peers to only invite other peers based on actual
social connections and to limit the size of each chunk that it
gives out so that it does not run out of node IDs. In this way,
Persea offers some resilience against social engineering. We
would also leverage the user interface to warn users during
the invitation process to not invite strangers.

The DHT layer of Persea is based on Kademlia [8], a DHT
that is widely adopted for the BitTorrent file-sharing P2P
system. The main difference in Persea is that IDs are repli-
cated evenly around the ID space for greater resiliency given
our ID distribution scheme.

2.2 Hierarchical ID Space
We now describe how node IDs are distributed in Persea.

Each bootstrap node has a contiguous range of node IDs

ID : 60

ID : 572

ID : 316

ID : 828

Figure 2: Evenly spaced target nodes

called a chunk, which includes the bootstrap node’s ID. A
bootstrap node divides its chunk of node IDs into sub-chunks
based on the chunk-factor, a system parameter.

When a bootstrap node invites a peer to join the system,
it assigns a node ID to the joining node from one of its sub-
chunks and also assigns the new node control over the rest
of the sub-chunk for further distribution. The newly joined
node becomes the authority for distributing node IDs from
the given sub-chunk. Thus, once the joining node becomes
a part of the system, it can invite more nodes to join the
system. Based on the invitation-relationship among peers,
a bootstrap tree is formed in which an inviter node is the
parent of its invited peers. If we have more than one boot-
strap node, then we would have a forest of trees, where each
bootstrap node is the root of each tree. The chunk-factor
and size of the ID space define the maximum possible height
and width of a tree. This mechanism has the advantage that
even if a bot compromises a node and leverages it to add a
large number of malicious nodes to the system, they will be
still confined in a particular region of ID space.

We briefly explain the mechanism with an example illus-
trated in Figure 1. Let A and B be two bootstrap nodes
that initiate building the system. If we consider a b-bit ID
space, then the total number of IDs in the DHT nmax would
be 2b. In this example, we consider a 10-bit ID space, so
nmax = 210. If Z is the number of bootstrap nodes, bnmax

Z
c

represents the number of node IDs that each bootstrap node
has in its chunk (with a small difference for the bootstrap
node with the highest ID). In this example, both node A and
node B have 512 node IDs. The lowest node ID in a chunk is
assigned to the bootstrap node itself and the remaining node
IDs are for further distribution to the newly joined nodes.
In this example, node A’s ID is 0 and the interval [1, 511] is
its chunk of IDs for further distribution.

Each node divides its chunk into sub-chunks based on the
chunk-factor. Let nc be the number of node IDs in a chunk
and ns represent the number of node IDs in each of its sub-
chunks (except the last sub-chunk). In a chunk, the lowest
ID is assigned to the owner node and the remaining node
IDs are for further distribution. Thus nc − 1 represents the
number of node IDs in a chunk available for distribution
by the owner node. If the chunk-factor is cf (0 ≤ cf ≤ 1)
then ns would be b(nc − 1)cf c. So, the number of sub-
chunks that can be created from a chunk is bnc−1

ns
c+1. This

also represents the maximum number of nodes that can be
invited by a node having chunk of size nc.

Let cf = 0.65 in this example. Node A divides its chunk
into nine sub-chunks where each sub-chunk (except the last
one) accommodates 57 node IDs and the last sub-chunk has
55 IDs. Node a1 joins the network after getting an invitation
from node A and node A assigns a sub-chunk to node a1.
The lowest node ID in this sub-chunk is 1, which is assigned

170



as the node ID of node a1 and the interval [2, 57] represents
the remaining node IDs of the sub-chunk that are for further
distribution by node a1. As the chunk space becomes smaller
with a deeper tree, a large ID space and appropriate selection
of the chunk factor is critical for large systems.

In Persea, we assume that each node knows the value of
Z, b and cf . Thus, if an inviter node intends to assign a
node ID to the joining node out of its chunk, the joining
node can easily verify it, because any node in Persea can
calculate the chunk distribution.

2.3 Replication Mechanism
We describe our replication mechanism in this section,

which is the key difference between the Persea DHT layer
and Kademlia [8].

When the initiator intends to store or retrieve a (key,
value) pair in Persea, it calculates the node ID of the tar-
get nodes as follows. Assume a b-bit ID space, such that
nmax = 2b. We virtually divide the ID space into R re-
gions where each region (except the last one) accommo-
dates at most D = bnmax

R
c IDs, and the last region has

nmax − D × (R − 1) IDs. The interval [r, r + D − 1] for
0 ≤ r < R − 1 represents the node IDs that are in the rth
region; the last region spans [D× (R−1), nmax−1]. A node
ID i is replicated to each other region by taking (i + D× r)
mod n for 1 ≤ r < R. In other words, the information is
replicated evenly around the ID space to R locations.

In Figure 2, we show an example of key replication for a
10-bit ID space and R = 4, where the key of the (key, value)
pair to be stored is 60. The target nodes are evenly spaced
around the circular ID space.

3. SIMULATION AND RESULTS
We evaluate Persea in simulations for the social network

dataset of wiki-Vote (7, 115 nodes, 103, 689 edges) [4,5] and
soc-Epinions1 (75, 879 nodes, 508, 837 edges) [11].In our ex-
periments, the nodes in these datasets are considered to be
honest and attacker nodes are dynamically added to the net-
work. We use n to refer to the number of honest nodes and
g to denote the number of attack edges.

We compare our results with other DHTs: Kad [3], Whanau [6,
7], and X-Vine [9]. We simulate Kad to get the lookup
success-rate for varying attack edges. The results show that
Persea performs much better than Kad in terms of lookup
success-rate (see Figure 3). For Whanau and X-Vine, we
compare our results with the results reported in [6, 7, 9].

Whanau: The network size used in [6] is comparable
to our wiki-Vote dataset. Our simulation results show that
for g/n = 0.15 the lookup success rate in Persea is 100%,
which is higher than that reported in [6]. For higher values
of g/n up to one, the lookup success rate in [6] is no better
than Persea. Moreover, Whanau is built upon one-hop DHT
routing mechanism and has high maintenance overheads [9].

X-Vine: For different network sizes, the maximum value
of g/n considered in [9] is no greater than 0.1. For this value
of g/n the maximum probability of success reported in [9] is
less than one. But in Persea for higher value of g/n, which
is 0.15 we find that the percentage of successful lookup is
100% for wiki-Vote and 99% for soc-Epinoins1 dataset. In
topologies with 100, 000 nodes, X-Vine requires 10-15 hops
for routing. In Persea, the average hop-count per lookup
is only 3.58 for a topology of 75, 879 nodes (soc-Epinions1)

0 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 1.65

20

40

60

80

100

g / n

S
u

c
c

e
s

s
fu

l 
L

o
o

k
u

p
 (

%
)

 

 

 Persea (wiki−Vote)

 Persea (soc−Epinions1)

 Kad (wiki−Vote)

 Kad (soc−Epinions1)

Figure 3: Comparison between Persea and Kad

and we extrapolate that it would remain less than four hops
for 100, 000 nodes.

4. FUTURE WORK
We would implement Persea in larger networks and our fu-

ture experiments would include detail performance and over-
head analysis for varying system parameters. Also, we would
perform theoretical analysis of Persea to find the probability
of lookup failure for varying attack edges.

5. ACKNOWLEDGEMENT
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. CNS-1117866
and CAREER Grant No. 0954133.

6. REFERENCES
[1] T. Cholez, I. Chrisment, and O. Festor. Evaluation of

Sybil attacks protection schemes in KAD. In AIMS:
Scalability of Networks and Services, 2009.

[2] J. R. Douceur. The Sybil attack. In IPTPS, 2002.

[3] H. J. Kang, E. Chan-Tin, N. J. Hopper, and Y. Kim.
Why Kad lookup fails. In P2P, 2009.

[4] J. Leskovec, D. Huttenlocher, and J. Kleinberg.
Predicting positive and negative links in online social
networks. In WWW, 2010.

[5] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed
networks in social media. In CHI, 2010.

[6] C. Lesniewski-Laas. A Sybil-proof one-hop DHT. In
Workshop on Social Network Systems, 2008.

[7] C. Lesniewski-Laas and M. F. Kaashoek. Whānau: A
Sybil-proof distributed hash table. In NSDI, 2010.

[8] P. Maymounkov and D. Mazieres. Kademlia: A
peer-to-peer information sytem based on the XOR
metric. In IPTPS, 2002.

[9] P. Mittal, M. Caesar, and N. Borisov. X-Vine: Secure
and pseudonymous routing in DHTs using social
networks. In NDSS, 2012.

[10] A. Mohaisen, A. Yun, and Y. Kim. Measuring the
mixing time of social graphs. In IMC, 2010.

[11] M. Richardson, R. Agrawal, and P. Domingos. Trust
management for the semantic web. In ISWC, 2003.

[12] B. Viswanath, A. Post, K. P. Gummadi, and
A. Mislove. An analysis of social network-based Sybil
defenses. In ACM SIGCOMM, 2010.

[13] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao.
SybilLimit: A near-optimal social network defense
against Sybil attacks. In IEEE S&P, 2008.

171




