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P2P systems are highly susceptible to Sybil attacks, in which an attacker creates a large number of
identities and uses them to control a substantial fraction of the system. Persea is the most recent
approach towards designing a social network based Sybil-resistant DHT. Unlike prior Sybil-resistant
P2P systems based on social networks, Persea does not rely on two key assumptions: (i) that the social
network is fast mixing, and (ii) that there is a small ratio of attack edges to honest peers. Both as-

sumptions have been shown to be unreliable in real social networks. The hierarchical distribution of

Keywords: node IDs in Persea confines a large attacker botnet to a considerably smaller region of the ID space than
Sybil _é‘ttaCk in a normal P2P system and its replication mechanism lets a peer to retrieve the desired results even if
ggi;‘;’%’m a given region is occupied by attackers. However, Persea system suffers from certain limitations, since it
cannot handle the scenario, where the malicious target returns an incorrect result instead of just ig-
noring the lookup request. In this paper, we address this major limitation of Persea through a Sybil
detection mechanism built on top of Persea system, which accommodates inspection lookup, a spe-
cially designed lookup scheme to detect the Sybil nodes based on their responses to the lookup query.
We design a scheme to filter those detected Sybils to ensure the participation of honest nodes on the
lookup path during regular DHT lookup. Since the malicious nodes are opt-out from the lookup path in
our system, they cannot return any incorrect result during regular lookup. We evaluate our system in
simulations with social network datasets and the results show that catster, the largest network in our
simulation with 149,700 nodes and 5,449,275 edges, gains 100% lookup success rate, even when the

number of attack edges is equal to the number of benign peers in the network.
© 2016 Elsevier Ltd. All rights reserved.
1. Introduction sharing system (Lian et al., 2007; Yang et al., 2005) and the

Vanish data storage system (Wolchoky et al., 2010).

Peer-to-peer (P2P) systems are inherently vulnerable to Sybil Recent research has focused on leveraging information from
attacks, in which an attacker creates a large number of pseu- social networks to make the system robust against Sybil attackers,
donymous entities and use them to gain a disproportionately resulting in a number of decentralized approaches (Lesniewski-
large influence over the system (Cholez et al., 2009; Douceur, Laas, 2008; Lesniewski-Laas and Kaashoek, 2010; Yu et al., 2008,

2002). The attackers then collude to launch further attacks, such ~ 2006; Tran et al,, 2011; Wei et al,, 2012; Mittal et al., 2012). The key
as taking over resources and disrupting connectivity to subvert  t© these approaches is the idea that honest and malicious nodes
the system's operation. Such attacks have been shown to be quite can be effectlyely partitioned into two subgraphs n the SOCI&.‘I
problematic in structured P2P systems in which nodes are placed network. The link betweep an honest node and a mallgous Peer1s
into a distributed hash table (DHT) like Chord (Stoica et al., 2001), Falled an at_tack edge, which represents an a§t of social engineer-
CAN (katnamy <t a. 2001, asty (Rowston and Drschl, 75,0 e the bonestnde oadd ek
2001), and Kademlia (Maymounkov and Mazieres, 2002). Ka- y p '

’ . the online social networks are fast-mixing, meaning that a ran-
demlia was the basis for both the Kad network and Vuze, DHTSs dom walk in the honest part of the network approaches the

used in the popular BitTorrent file-sharing P2P system with uniform distribution in a small number of steps, and (ii) that the
millions of users each. Researchers have documented this vul- number of attack edges are rather limited in online social net-
nerability in real-world systems, including the Maze P2P file-  works. Recent studies (Mohaisen et al., 2010; Viswanath et al.,
2010; Yang et al., 2011; Bilge et al., 2009), however, show that
the above assumptions do not hold in real-world social net-
works. So, it remain an open research problem, until Persea
(Al-Ameen and Wright, 2014) was proposed, to design a social
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network based Sybil defense mechanism, which does not rely on
these assumptions.

1.1. Motivation

Persea (Al-Ameen and Wright, 2014) derives its Sybil resistance
by assigning IDs through a bootstrap tree, the graph of how nodes
have joined the system through invitations. Persea argues that
building a bootstrap tree is more realistic than assuming that the
clients have access to lists of social network connections from a
system like Facebook. Also, IDs are certified in Persea, making
attacks based on ID forging impossible outside of attacker-con-
trolled ID ranges. In Persea, the (key,value) pair is replicated in
evenly spaced nodes, so that even if a given region is occupied by
the attacker, the desired (key,value) pair can be retrieved from
other regions. We give a overview of Persea system in Section 2.

The Persea approach offers a number of important advantages
over previous schemes:

e Unlike prior Sybil-resistant P2P systems based on social net-
works, Persea does not rely on two key assumptions: (i) that the
social network is fast mixing, and (ii) that there is a small ratio
of attack edges to honest nodes.

e The hierarchical distribution of node IDs limits the attackers to
isolated regions in ID space.

However, Persea system suffers from certain limitations that
make its use questionable in real world scenario. In Persea DHT, a
(key,value) pair is replicated in a number of nodes and the lookup
operation is performed for each target node to get the value, as-
sociated with the search-key. Persea assumes that when the target
node is malicious it does not return incorrect result, rather ignores
the lookup request. So, in Persea DHT, if the initiator of a lookup
retrieves the correct result from at least one benign target, the
lookup is termed to be successful. But in real-world scenario, the
malicious target may reply with incorrect result to make it harder
for the initiator to retrieve the correct one from the set of different
returned results. Persea system cannot handle such obvious
attacks.

The simplest solution to this limitation of Persea could be im-
plementing majority voting scheme, where the initiator picks the
result with higher count. If the counts of two types of results are
same, the initiator randomly picks one as the final result. In our
simulation, we implement the above strategy of adversaries and
evaluate Persea with majority voting scheme. However, our results
show that the lookup success rate in Persea sharply decreases with
the increase in attack edges (See Section 6), which infers that
majority voting is not effective enough to make the system robust,
when the malicious target returns incorrect result. So, the efficacy
of Persea is left as an open question in real-world scenario.

1.2. Contributions

In this paper, we address this major limitation of Persea and
develop a Sybil detection scheme on top of Persea system. We
propose inspection lookup to detect the Sybils, which is a specially
designed lookup mechanism to determine the status (honest or
malicious) of a node. This lookup seems as a regular DHT lookup to
a peer, whose status is being inspected, so that an attacker cannot
play a fabricated role during inspection lookup to prove it as an
honest node. We introduce the idea of collaborative friends, the
groups of benign peers, who agree to execute the inspection
lookups for detecting the Sybils. We provide a detailed description
of our Sybil detection mechanism in Section 3.

We develop a mechanism to filter the detected Sybil nodes
from the lookup path for ensuring the participation of benign

peers during regular DHT lookup. We then incorporate our filter-
ing scheme with the lookup mechanism in Persea. So, in our
system the attackers are opt-out of the lookup path and thus, they
can neither intercept a lookup (as an intermediate node) nor re-
turn an incorrect result (as the target node).

While we incorporate our Sybil detection mechanism with
Persea, we name the new system iPersea (improved Persea), which
inherits the advantages of Persea that it gains over prior social
network based Sybil-resistant systems. So, iPersea does not de-
pend on the fast-mixing social network and small ratio of attack
edges to honest peers. We justify our claims through evaluations
in Section 6. We simulate for networks with different clustering
coefficients to show that our system does not depend on the fast-
mixing nature of a network. The clustering coefficient is a measure
of degree to which nodes in a network tend to cluster together
(Mislove et al., 2007; Grabowski and Kosinski, 2008), and it is
therefore directly related to the fast-mixing property of a network
(Grabowski and Kosinski, 2008). To validate the claim that iPersea
does not depend on the small ratio of attack edges to honest peers,
we evaluate for this ratio, up to 1.5 and find consistent results,
where the lookup success rate for any network in our evaluations
is no less than 92.9%.

Our experimental results show that 70% of lookups succeed in
Persea, while the ratio of attack edges to honest nodes is 0.5 in
facebook social network. However, in iPersea, 93.6% lookups suc-
ceed in facebook, even when the ratio of attack edges to honest
nodes is increased to one. In flickr and catster (largest network in
our simulation with 149,700 nodes), 100% lookups get successful
in our system when we have equal number of attack edges and
honest nodes.

The remainder of the paper is organized as follows: we give a
overview of Persea system in Section 2 and explain the design our
Sybil detection mechanism in Section 3. We then describe the
attack model in Section 4 before presenting our simulation results
in Section 6. In Section 7 we discuss the related works in Sybil
defense. We give a direction to our future work Section 8 and then
conclude in Section 9.

2. Overview of Persea

In this section, we briefly describe the design of Persea (Al-
Ameen and Wright, 2014). We begin with the overview of the
system and then address the ID space allocation, ID certification
and key replication. We also describe the routing table organiza-
tion and lookup mechanism of Persea.

2.1. Design overview

Persea consists of two layers: a social network layer (the
bootstrap graph) and the DHT layer. In Persea, an edge refers to a
link between two nodes in the DHT layer. The bootstrap network
and DHT are simultaneously built starting with a set of bootstrap
nodes. The bootstrap nodes are the initiators of the system. They
are connected to each other in both the bootstrap network and the
DHT. Node IDs in the DHT are assigned to the bootstrap nodes such
that they are evenly spaced over the circular ID space. Thus, the ID
space of the DHT is divided into one region for each bootstrap
node.

A new peer must join the Persea system through an invitation
from an existing node in the network. In general, it is expected
that a node that is invited is socially known to the inviting peer.
When a node is invited, it not only becomes a part of the bootstrap
network but also gets a node ID in DHT layer. The new node gets a
chunk of node IDs that it can use to invite more nodes for joining
the network. ID assignments and chunk allocations are put into
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certificates signed by the parent nodes, and certificates are stored
in the DHT itself to allow for reliable distributed checking of the
chain of certificates all the way up to the bootstrap nodes.

The DHT layer of Persea is based on Kademlia (Maymounkov
and Mazieres, 2002), a DHT that is widely adopted for the Bit-
Torrent file-sharing P2P system. The main difference in Persea is
that IDs are replicated evenly around the ID space for greater re-
siliency given the ID distribution scheme.

2.2. Hierarchical ID space

We now briefly describe how node IDs are distributed in Per-
sea. Each bootstrap node has a contiguous range of node IDs called
a chunk, which includes the bootstrap node's ID. A bootstrap node
divides its chunk of node IDs into sub-chunks based on the chunk-
factor, a system parameter.

When a bootstrap node invites a peer to join the system, it
assigns a node ID to the joining node from one of its sub-chunks
and also assigns the new node control over the rest of the sub-
chunk for further distribution. The newly joined node becomes the
authority for distributing node IDs from the given sub-chunk.
Thus, once the joining node becomes a part of the system, it can
invite more nodes to join the system. Based on the invitation-re-
lationship among peers, a bootstrap tree is formed in which an
inviter node is the parent of its invited peers. If the number of
bootstrap node is more than one, then it would have a forest of
trees, where each bootstrap node is the root of each tree. The
chunk-factor and size of the ID space define the maximum pos-
sible height and width of a tree. This mechanism has the ad-
vantage that even if a bot compromises a node and leverages it to
add a large number of malicious nodes to the system, they will be
still confined in a particular region of ID space.

2.3. Routing table organization

In the DHT layer, each node maintains a routing table of b node
lists for a b-bit ID space. Each list has up to k entries and is called a
k-bucket. Each k-bucket entry contains the IP address, port, node
ID, and public key of another node. The list is organized so that the
ID of a node in the bth list of a node with ID i should share the first
b — 1 bits of i and have a different bth bit from i.

2.4. Replication

In Persea, a (key,value) pair is stored in evenly spaced nodes, so
that even if a given region is occupied by the attackers, the desired
(key,value) pair can be retrieved from other regions. In Persea, the
ID space is virtually divided into R regions and the (key,value) pair
is replicated in R evenly spaced nodes, one in each virtual region.
The evaluations in Persea show that R=7 gives the optimal results
for the networks, considered in their simulation (Al-Ameen and
Wright, 2014).

2.5. Lookup mechanism

Node lookup in Persea is initiated by the lookup(key) request
where a node queries the a nodes in its k-buckets that are the
closest ones to the desired key. Each of the @ nodes sends the
initiator  node IDs from its k-bucket closest to the target node.
From the set of returned node IDs, the initiator selects a nodes for
the next iteration. This process is iterated until the target is found
or no nodes are returned that are closer than the previous best
results.

The initiator of a lookup performs R such independent parallel
lookup operations and when an owner is found from any of R
independent lookups, the initiator sends the owner a message for

either the store (put(key, value)) or retrieval ( get(key)) operation.
We incorporate our Sybil-filtering scheme (see Section 3.3) with
this lookup mechanism to opt-out the attackers from the lookup
path.

3. Sybil detection mechanism

Our Sybil detection mechanism detects an attacker by ex-
ploiting its malicious behavior during a lookup. We propose in-
spection lookup to detect the Sybils, which determines the status
(honest or malicious) of a node based on its response to the lookup
request. Inspection lookup accommodates certain strategies to
appear as a regular lookup to a peer, whose status is being in-
spected, so that an attacker cannot fabricate its behavior during
inspection lookup to prove it as a benign node. The status (honest
or malicious) of a node, determined through inspection lookup, is
used to filter Sybil nodes during regular lookup. We incorporate
our filtering scheme with the lookup mechanism of Persea to
ensure higher lookup success rate by ensuring the participation of
honest peers on the lookup path.

Our Sybil detection mechanism is based on the following
assumptions:

e The adversary intercepts as many lookup queries as possible. As
a target node, an attacker does not return the correct value,
associated with the search-key.

® An honest node adheres to the protocol and acts legitimately.

In our mechanism, the status of a node represents whether it is
honest or malicious, represented by ‘+’ (honest) or ‘-’ (mal-
icious). Each parent node determines the status of its direct chil-
dren with the help of selected peers, called collaborative friends.

3.1. Selecting collaborative friends

A peer (say it node P) requests its parents, grandparents and
other ancestor nodes to suggest trusted peers, who agree to be the
collaborative friends of node P for detecting the Sybils. An ancestor
can suggest any number of collaborative friends, depending upon
number of peers it trust and their willingness to collaborate. The
more collaborative friends, node P has from different layers of
hierarchical ID space, the harder it is for the child (may be, an
attacker) of node P to distinguish an inspection lookup from the
regular one. Since, node P selects the initiator of an inspection
lookup from the set of its collaborative friends, the randomness in
the placement of collaborative friends in ID space contributes in
rising the hurdles to distinguish between inspection and regular
lookup. So, node P requests its ancestors at each upper layer to be
its collaborative friends and suggest more trusted nodes.

In ideal case, an ancestor node always returns trusted colla-
borative friends. However, in real-world scenario, an ancestor,
which is not responsible enough in detecting the Sybils, may re-
turn randomly-selected collaborative friends. In our experiments,
we consider both scenarios and the results for Sybil-detection and
lookup success rate show very subtle differences between two
approaches. So, random selection of collaborative friends can be
effective in detecting the Sybils and consequently gaining high
lookup success rate.

3.2. Inspection lookup

The goal of inspection lookup is to detect the Sybils based on
their responses to the lookup messages. To design an inspection
lookup, we adapt the basic lookup mechanism of Persea (see
Section 2) and incorporate following strategies so that an
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inspection lookup appears to be a regular lookup to the peer and
consequently an attacker cannot distinguish it from a regular
lookup.

® The source and target of an inspection lookup and also the node,
whose status is to be inspected, are randomly selected.

® [nspection lookups are performed at uniformly distributed
random interval.

® During the lookup operation in DHT, the role of a peer on the
lookup path may be an intermediate hop or the target. In each
inspection lookup, it is randomly selected which role (inter-
mediate hop or target) of a peer would be inspected.

While inspecting the role of a child as an intermediate hop,
node P selects a peer (say it node F) from its list of collaborative
friends to be the initiator of the inspection lookup. It selects one of
its direct children (say it node T) as the target node. These selec-
tions are made randomly. From the set of direct children, whose
status are not inspected yet, node P randomly selects a child (say it
node C) as an intermediate node of the lookup. Based on the
success of inspection lookup, the status of node C is determined.

According to the suggestion of node P, node F sends the lookup
request to node C. Since the inspection lookup appears as a regular
lookup to Node C, it follows the mechanism of regular lookup and
returns £ nodes from its k-buckets that are closest ones to the
search-key. If the set of returned nodes does not include node T,
node F then sends lookup request to each of these f nodes in the
next iteration. This process is iterated until the target is found or
no nodes are returned that are closer than the previous best
results.

In the ID space of Persea, where the node IDs are hierarchically
distributed, there is an obvious lookup path from node C to node T
through their parent node P. So, if the inspection lookup does not
reach node T, node C is considered responsible for this failure and
gets ‘—’ status. Node C gets ‘+’ status when the lookup succeeds,
since an honest node directs a lookup towards the target.

When the role of a peer as the target node is inspected, a
randomly selected collaborative friend of node P (say it node F;)
stores a (key,value) pair in node C and makes sure that the key
matches with the node ID of node C. After a random interval, the
lookup request is sent to node C from a collaborative friend of
node P (say it node F,) to return the value associated with the
search-key. Node F, is informed by node P about the desired value
that should be returned by node C. If it is not returned, node C is
marked with ‘-’ status. If node C returns the correct value, it gets
‘+’ status, since an honest peer always returns the appropriate
value associated with the search-key.

False positive and false negative: During inspection lookup, an
honest intermediate node, whose status is being inspected, may
unintentionally return malicious peers that are closest to the tar-
get, increasing the probability of a lookup to fail. If the lookup fails,
the honest node is marked with ‘-’ status that increases the rate
of false positive.

The rate of false positive is zero when the role of a peer as the
target node is inspected, as an honest node always returns the
correct value associated with the search-key. The rate of false
negative is zero in both cases, since our mechanism correctly
identifies an attacker exploiting its malicious response to the in-
spection lookup message.

The above discussions on false-positive and false-negative are
applicable to the scenarios, which abide by the assumption of
selecting trusted nodes only, as the collaborative friends. However,
for random selection of collaborative friends an attacker may get
selected. In this case, if the attacker initiates an inspection lookup
as a collaborative friend, a peer, whose status is inspected, gets ‘—’
status if it is honest and is marked with ‘+’ status if it is malicious,

irrespective of the outcome of inspection lookup. Thus, for random
selection of collaborative friends, the rate of both false-positive
and false-negative may get increased.

3.3. Sybil-filtering mechanism

In this section, we describe the mechanism to opt-out the Sy-
bils from the lookup path for ensuring the participation of honest
nodes during regular lookup. In our evaluations, we incorporate
our filtering mechanism with the basic lookup scheme of Persea.

During regular lookup, before selecting a peer (say it node Q) as
an intermediate hop, the initiator of the lookup (say it node L) asks
the parent of node Q to send its status. We assume, a malicious
peer invites other attackers to join the network and promotes its
children by giving ‘+’ status. According to these assumptions, a
malicious node gets ‘—’ status only from a benign parent. So, if the
status of node Q is found '+’, node L gets the status of node Q's
parent. This process is repeated for the other ancestors of node Q
until the bootstrap node is reached or the ‘-’ status is found for an
ancestor.

If the bootstrap layer is reached, it suggests that none of node
Q's ancestors is marked with ‘-’ status. So, node Q is considered as
a benign peer and gets selected for the lookup. If ‘-’ status is
found for node Q or any of its ancestor nodes, node Q is termed as
a malicious peer and does not get selected as an intermediate node
for the lookup. Once node L gets the status of node Q, it stores that
status to be used in future lookup.

Node L follows the same procedure, as described above, to get
the status of a target node, for deciding whether to accept the
value, returned by that node.

4. Attack model

We inherit most of the features of the attack model in Persea
(Al-Ameen and Wright, 2014), where attackers use social en-
gineering to create attack edges in the social network. When a
malicious peer joins the network, it gets a chunk of node IDs for
further distribution and we assume, an attacker invites only mal-
icious peers for joining the network to infiltrate the system with as
many attackers as possible. Also, the attacker promotes its children
by assigning ‘+’' (honest) status without performing any inspec-
tion lookup for them.

As in Persea, we assume that the attackers know the IDs of all
other attackers and store only the information of malicious nodes
in their k-buckets. The goal of the adversary is to intercept as many
lookup queries as possible. During lookup, If an attacker gets the
lookup message, it returns the node IDs of malicious peers from its
k-bucket. When the attacker receives a get message, instead of just
ignoring the message (as in Persea (Al-Ameen and Wright, 2014)),
it returns an incorrect value in our attack model.

In our Sybil detection mechanism, for random selection of col-
laborative friends, an attacker (say it node A) may be selected as the
collaborative friend. We assume, as the collaborative friend of a
node (say it node P), when node A initiates an inspection lookup to
inspect the status of a child of node P (say it node C), whatever be
the results of lookup; if node C is a malicious peer, node A informs
node P that the lookup succeeds, however, if node C is an honest
peer, the response of node A to node P says, the lookup fails.

5. Analysis

In this section, we develop analytical models to estimate
average hop-count per regular lookup and the rate of false positive
and false negative in our Sybil detection mechanism.
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5.1. Lookup path length

We develop an analytical model to estimate the average hop-
count per lookup. Let e, represent the average edges per node in a
network and ay, be the number of attack edges per honest node. So,
an = g/n, where g represents the number of attack edges and n is
number of honest nodes. When a lookup operation starts in our
system, the initiator of the lookup selects @ nodes from its routing
table. So, the number of malicious peers in the set of & nodes is
represented by a x Z—;' In the next iteration, each of @ nodes re-

turns S closest nodes (to the target) and a malicious peer always
returns adversary nodes. Let m; represent the number of malicious
nodes that the initiator gets in the set of « x g nodes in ith(i > 1)
iterations. So, in the first iteration, the number of malicious peers
that the initiator gets in the set of axp nodes is:
pmlz(axZ—Zxﬁ)+((l —axg—’;)xﬁx:f—g .

The attackers try to subvert the lookup query and thus the
number of attackers in each iteration contributes to estimate the
probability of a lookup to succeed. The number of malicious nodes,
selected by the initiator in the set of a nodes for (i + 1)th iteration
is: a x = % So, the probability (p,,) of choosing a malicious

(1></3
nodes from the set of & nodes at iteration i is represented by ﬂ

Thus, at any iteration j(j > 1), we get o by evaluating ]'[, 1 Py

The lookup continues until the target node is found and we esti-
mate the probability of lookup failure at iteration j by evaluating
P In our analysis, to estimate the path length of a lookup, we
take a constant . representing a very low probability of lookup
failure and then we calculate the minimum value of i as the lookup
path length, where p,. <.

We consider [.=0.001 to get the lookup path length from our
analytical model. To compare our analytical results with the results
from our evaluations, we consider a,=1.0, « = 5 and g = 7 (as used
in our simulations). The value of e, depends upon individual net-
work. Fig. 1(a) shows the differences between our analysis and si-
mulation for average hop-count per regular lookup. We find that
our analytical estimations are very close to the experimental results.

5.2. Rate of false positive

To estimate the rate of false positive, we use the above analy-
tical model for measuring - We consider both trusted and

randomly selected collaborative friends in our analysis. For trusted
collaborative friends, the rate of false positive is zero when the role
of a peer as the target is inspected. However, when the role of a
peer as the intermediate node is inspected, we may get a rate of
false positive, since an attacker may intercept the lookup (see
Section 3 for explanation). So, the number of attackers, selected in
an iteration is directly related to the rate of false positive. Thus, we
use py, to estimate the false positive rate and put j=1 in this case.

In our analysis, we assume that j=1 is a reasonable estimation for
hop-count per inspection lookup and also, we get the same value
for j, when we take the floor of the results for average hop-count
per inspection lookup in our evaluations (see Table 5).

While comparing our analytical estimations for false positive
rate with the experimental results, we consider the ratio of attack
edges to honest nodes is one. Fig. 1(b) illustrates the results for this
comparison. We find that the difference between analysis and si-
mulation is 0.01 in the network datasets of hamsterster (ham),
flickr (flic), wiki-Vote (wiki) and ca-AstroPh (astre). In the social
network dataset of facebook (fb), we get exactly same results from
our analytical model and simulations.

Now, we estimate the false positive rate in a scenario, where
the collaborative friends are randomly selected. In this case, the

false positive rate may get increased not only by the attackers on
the lookup path, but also by malicious collaborative friends. An
attacker, as a collaborative friend, contributes to increase the false
positive rate when it is selected to initiate an inspection lookup
and the peer, whose status is being inspected in that lookup, is an
honest one. So, to estimate the false positive rate, we measure the
probability of selecting a malicious collaborative friend and an
honest node (to inspect its status) in the same inspection lookup
and then take the union of this probability with pmj(j =1).

Let a node N be at level [, + 1 of the hierarchical ID space and ¢,
be the number of collaborative friends from each of its upper level.
For simplicity of analysis, we consider c,; is same for each level. In
our analysis, e, represents the average edges per node in a net-
work and ay, is the number of attack edges per honest node. So
when a node is randomly selected as a collaborative friend,

represents its probability to be malicious. Thus, the expected
number of malicious collaborative friends of node N is: e— X Iy X Cype

When node N randomly selects a peer from its set of collaborative
ajxlh XCp|
friends to initiate an inspection lookup, E’thT’ = ? represents
n P
the probability of this collaborative friend to be an attacker. To
inspect the status, the probability of selecting an honest child of

node N is: ep ~%_ Now, we measure the probability of selecting a

malicious collaboratlve friend and an honest node (to inspect its
status) in the same inspection lookup as: 2 x 2. So, for
P

of collaborative friends, we calculate

(G e” h X py,) for the estimation of false
P

random selection
a ep —a,

(o X o)+ Py =
positlve rate.

We compare our analytical estimations with the results from
our simulation, shown in Fig. 1(c), where g/n = 1.0. The difference
in false positive rate between analysis and evaluations is 0.01 in
ham and 0.02 in the network of fb, wiki and astro. We get exactly
same results from our analytical model and simulation in the so-
cial network datasets of flic and cat (the largest network in our
evaluations).

6. Simulation and results

In this section, we describe the design of our simulation and
present the results of our experiments. We build our Sybil detec-
tion mechanism on top of Persea system and inherit hierarchical
node ID distribution and certification, routing table organization
and replication mechanisms of Persea (Al-Ameen and Wright,
2014). We incorporate our Sybil-filtering scheme with the lookup
mechanism of Persea to achieve higher lookup success rate.

We evaluate for a 31-bit ID space. For different system para-
meters, we use the same values as used in Persea, such as: chunk-
factor ¢;=0.65, redundancy R=7, and Kad parameters a = 5, = 7
and bucket size k=7. In our evaluations, we assume that each node
has one collaborative friend at each of its upper layers.

We simulate for networks with different clustering coefficients
and the experimental results show that the effectiveness of our
Sybil detection scheme and the lookup success rate do not depend
on the fast-mixing nature of a network. We represent the number
of attack edges by g and the number of benign peers by n. To va-
lidate our claim that iPersea gains high lookup success rate, even
for a high value of g/n, we evaluate for this ratio, up to 1.5.

6.1. Building the network and joining of attackers
We follow the exact same approach, as in Persea (Al-Ameen

and Wright, 2014), for building the network and joining of at-
tackers. So, we build the bootstrap tree by emulating the process
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Fig. 1. Comparison between results from analysis and simulation.

of nodes joining via existing connections in a social network
graph. Although our system does not rely on the structure of the
social graph for its security properties, we use real social network
graphs to provide a realistic basis for the choices that nodes make
in building the tree.

As we construct the initial bootstrap graph, the nodes in these
datasets are considered to be honest. We build our system starting
with seven bootstrap nodes. In deployment, bootstrap nodes
would be the users who take initiative to build the system. In our
experiments, we choose seven highly connected nodes from the
social network to start building the network. We then use
breadth-first-search over the social graph to add other nodes. A
link between node P and node Q in the dataset is interpreted as an
invitation from node P to node Q. Thus, P becomes Q's parent in
the bootstrap graph. Also, P and Q add each other to their k-
buckets.

After adding all of the honest nodes, we add Sybil nodes by
creating attack edges to randomly selected honest peers. An attack
edge represents an invitation from the honest node, providing the
attacker with a certified ID and chunk of ID space through which it
could invite more Sybil nodes. An attack edge can be created with
a benign peer from any level of the hierarchical ID space.

One may think that the attacker is at a disadvantage by being
added after honest nodes build a bootstrap tree. This is not the
case. The attackers have an equal chance to get attack edges at all
levels of the tree, and there are always chunks to be given out at

the highest levels of the tree. To demonstrate this in Persea (Al-
Ameen and Wright, 2014), the authors examined the ratio of at-
tack edges to honest nodes (g/n) in their simulations for all levels
of the ID space, where the ratios are roughly equal across the
levels.

We evaluate our mechanism in simulations for one collabora-
tion network: ca-AstroPh (astro) and five social network datasets:
facebook (fb), flickr (flic), catster (cat), wiki-Vote (wiki) and
hamsterster (ham). Here, wiki uses directed edges to indicate
“who trusts whom”, which we believe is a good proxy for the
notion that parent node would accept another node as a child in
the bootstrap graph. In our evaluations, ham, fb, flic and cat are
social networks drawn from the users on http://Hamsterster.com,
http://Facebook.com, http://Flickr.com and http://Catster.com
Websites, respectively.

In our evaluations, cat is the largest network with 149700 nodes
and 5449275 edges. While considering clustering coefficients, ham
and astro are the networks with the smallest (0.08) and largest
(0.63) clustering coefficient, respectively. Table 1 shows the sizes
and clustering coefficients of the network datasets.’

! http://snap.stanford.edu/data, http://konect.uni-koblenz.de, http://so

cialcomputing.asu.edu/pages/datasets.


http://Hamsterster.com
http://Facebook.com
http://Flickr.com
http://Catster.com
http://snap.stanford.edu/data
http://konect.uni-koblenz.de
http://socialcomputing.asu.edu/pages/datasets
http://socialcomputing.asu.edu/pages/datasets
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6.2. Rate of false positive and false negative

In this section, we show the results for the rate of false positive
and false negative in our Sybil detection mechanism, when the
collaborative friends are either trusted or randomly selected.

When trusted nodes are selected as collaborative friends, the
results in Table 2 show that for g/n = 1.0, the rate of false positive
is 0.05 in ham (network smallest clustering coefficient) and 0.067
in astro (network largest clustering coefficient). When the number
of attack edges is equal to the number of honest peers, the max-
imum rate of false positive for any network is found 0.09 in wiki.

For the random selection of collaborative friends, the rate of
false positive slightly increases as compared to the trusted colla-
borative friends; for example, in cat, the largest network in our
experiments, when g/n = 1.0, the rates of false positive are 0.082
and 0.087 for trusted and randomly selected collaborative friends,
respectively. Table 3 shows the rates of false positive for randomly
selected collaborative friends.

The rate of false negative is zero for trusted collaborative
friends. However, for randomly selected collaborative friends, the
rates of false negative vary in the range between 0.001 (fb) and
0.04 (ham), when the ratio of attack edges to the number of
honest peers is one (shown in Table 4). The rate of false negative
gets much lower for decreasing g/n; for example, in flic, the rate of
false negative is zero when g/n = 0.80.

6.3. Lookup success rate

We evaluate Persea with majority voting scheme and then
compare the lookup success rate with iPersea for networks with
different clustering coefficients, shown in Fig. 2. The results show
that iPersea performs much better than Persea. For increasing g/n,

Table 1
Topologies.
Network Nodes Edges Avg. Clustering Coeff.
hamsterster (ham) 2426 16,631 0.08
facebook (fb) 63,731 1,545,686 0.15
flickr (flic) 80,513 5,899,882 0.17
wiki-Vote (wiki) 7115 103,689 0.21
catster (cat) 149,700 5,449,275 043
ca-AstroPh (astro) 18,772 396,160 0.63
Table 2

Rate of false-positive for varying g/n [Trusted collaborative friends].

g/n 0.10 0.50 0.80 1.0 125 1.50
ham (0.08) 0.046 0.047 0.049 0.05 0.09 0.095
fb (0.15) 0.063 0.064 0.066 0.067 0.069 0.07
flic (0.17) 0.037 0.039 0.04 0.042 0.048 0.055
wiki (0.21) 0.07 0.078 0.08 0.09 0.092 0.093
cat (0.43) 0.077 0.079 0.08 0.082 0.09 0.12
astro (0.63) 0.06 0.063 0.064 0.067 0.09 0.11
Table 3

Rate of false-positive for varying g/n [Randomly selected collaborative friends].

gn 0.10 0.50 0.80 1.0 125 150
ham (0.08) 0.046 0.047 0.08 0.09 0.14 0.19
fb (0.15) 0.063 0.064 0.067 0.068 0.071 0.073
flic (0.17) 0.037 0.039 0.04 0.045 0.052 0.06
wiki (0.21) 0.07 0.078 0.09 0.121 0.124 0.126
cat (0.43) 0.077 0.08 0.084 0.087 0.097 0.13
astro (0.63) 0.06 0.07 0.079 0.083 0.108 0.13

Table 4
Rate of false-negative for varying g/n [Randomly selected collaborative friends].

gln 0.10 0.50 0.80 10 125 150
ham (0.08) 0.0 0.0 0.031 0.04 0.05 0.095
fb (0.15) 0.0 0.0 0.001 0.001 0.002 0.003
flic (0.17) 0.0 0.0 0.0 0.003 0.004 0.005
wiki (0.21) 0.0 0.0 0.01 0.031 0.032 0.033
cat (0.43) 0.0 0.001 0.004 0.005 0.007 0.01
astro (0.63) 0.0 0.007 0.015 0.016 0.018 0.02

lookup success rate in Persea decreases sharply. We evaluate
iPersea for g/n up to 1.5 and find consistent results for increasing
g[n; in iPersea, the lookup success rate for any network in our
simulation is no less than 92.9%. We get 100% lookup success rate
in cat and flic for both trusted and randomly selected collaborative
friends, even when the number of attack edges is equal to the
number of honest peers in our system.

When g/n=1.0 in ham (network with lowest clustering
coefficient), the lookup success rate in Persea is 59%, whereas the
percentage of successful lookup in iPersea is 100% for trusted
collaborative friends and 99% for randomly selected collaborative
friends. In astro (network with largest clustering coefficient), 54%
lookups succeed in Persea when g/n = 1.0. For the same ratio, the
lookup success rates in iPersea are 97.5% and 96.6% for trusted and
randomly selected collaborative friends, respectively.

Our experimental results show that the lookup success rates for
trusted and randomly selected collaborative friends remain same in
cat, flic and wiki, when the number of attack edges is equal to the
number of honest peers. For the same ratio of attack edges to
honest peers, while comparing these two approaches of selecting
collaborative friends, the differences in the percentage of successful
lookup in other networks are as follows: 0.04% in fb, 0.09% in astro
and 1% in ham. Hence, the lookup success rates for random selec-
tion of collaborative friends are very close to that in the ideal sce-
nario, which assumes, the collaborative friends are trustworthy.

6.4. Overhead

We evaluate to figure out the overhead of our system in terms
of average hop-count per lookup. Our experimental results show
the overhead for both inspection and regular lookups, when the
collaborative friends are either trusted or randomly selected. We
also compare our overheads for regular lookup with Persea.

Inspection lookup: Let us assume, the role of node C as the in-
termediate hop gets inspected. In ideal case, node C has the target
of the lookup in its friend-list and in this scenario, the number of
intermediate peer to reach the target is one. However, hop-count
increases if the target node is not a direct friend of node C. Table 5
shows the results for average hop-count per inspection lookup.

The results illustrate that when the trusted nodes are selected
as collaborative friends, average hop-count for different networks
vary in the range between 1.10 (astro) and 1.69 (cat). For random
selection of collaborative friends, the minimum and maximum
average hop-counts per inspection lookup are 1.11 (astro) and 1.71
(cat), respectively. Hence, the differences between these two ap-
proaches of selecting collaborative friends are quite subtle, in
terms of average hop-count per inspection lookup.

Regular lookup: Our evaluations figure out the overheads as-
sociated with regular lookups, shown in Table 6, which also re-
present the overhead for a peer to get the status of a node from its
parent. The increase in hop-count is found very small, when the
collaborative friends are randomly selected instead of selecting the
trusted peers only.

The results show that iPersea achieves some improvements
over Persea while considering the average hop-count per regular
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Fig. 2. Lookup success rates in networks with different clustering-coefficients.
Table 6
Table 5 Average hop-count in regular lookup [g/n = 1.5].
Average hop-count in inspection lookup [g/n = 1.5].
Network Persea iPersea (Trusted collabora- iPersea (Random colla-
Network Trusted collaborative friend Random collaborative friend tive friend) borative friend)
ham (0.08) 127 135 ham (0.08) 2.85 2.80 2.84
fb (0.15) 1.29 1.29 fb (0.15) 479 470 470
flic (0.17) 141 142 flic (017) 3.84 344 3.50
wiki (0.21) 124 126 wiki (021) 324 318 3.20
cat (0.43) 1.69 171 cat (043) 369 3.59 3.62

astro (0.63) 110 11 astro (0.63) 3.93  3.87 3.88
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lookup. In both Persea and iPersea, the maximum hop-count per
regular lookup is found in fb, which is 4.79 in Persea and 4.70 in
iPersea for both trusted and random collaborative friends. In cat,
the largest network of our simulation, average hop-count per
regular lookup is 3.69 in Persea, which 3.59 for trusted colla-
borative friends and 3.62 for randomly selected collaborative
friends in iPersea.

7. Related work

Sybil attacks can be leveraged to greatly undermine the op-
erations of a variety of systems, including P2P systems (as ex-
amined in this paper), online social networks (OSNs), wireless
sensor networks, online ratings systems, and more. Because of the
power and generality of the Sybil attack, a large number of de-
fenses have been proposed (Levine et al., 2006). Since we have
already discussed about Persea, in this section we examine other
major approaches proposed in literature that use social network in
their Sybil defense mechanisms.

A number of works have proposed Sybil detection techniques
or Sybil resistance based on random walks over a social network
(Lesniewski-Laas, 2008; Lesniewski-Laas and Kaashoek, 2010;
Mittal et al., 2012; Yu et al., 2008, 2006; Danezis and Mittal, 2009;
Wei et al., 2012; Xinhui et al., 2015). The basic idea is that we can
divide the social network into a Sybil region and an honest region
connected via a small number of attack edges (a small cut). Ran-
dom walks starting from the honest region have a low probability
of ending in the Sybil region. This can be leveraged in a variety of
ways, leading to detection mechanisms (Yu et al., 2006, 2008;
Danezis and Mittal, 2009; Wei et al., 2012), and Sybil-resistant P2P
designs (Lesniewski-Laas, 2008; Lesniewski-Laas and Kaashoek,
2010; Mittal et al., 2012). In this case, Sybilshield (Shi et al., 2013;
Gunturu, 2015) assumes that there exist multiple number of large,
medium and small communities in real-time social networks. The
authors conducted a real-time experiment on Myspace dataset,
which reveals that it can be divided into 19 communities (Shi
et al,, 2013).

All of these mechanisms require the absence of small cuts
within the honest region in the underlying social network (i.e., the
honest region should be fast-mixing). Experimental results of
Mohaisen et al., however, show that the mixing time of many real
social networks is slower than the mixing time assumed by these
works (Mohaisen et al., 2010). Mohaisen et al. also point out that
some of these works have made questionable assumptions in their
evaluations, which may have helped lead to the good results that
have been published for these schemes (Mohaisen et al., 2010).
Additionally, many real-world social networks fail to satisfy the
other requirements of the systems, either because a significant
fraction of nodes are sparsely connected or the users are organized
in small tightly-knit communities, which are sparsely inter-
connected (Viswanath et al., 2012).

Lesniewski-Laas proposes a protocol (Lesniewski-Laas, 2008) in
which a node constructs its routing table through independent
random walks and recording the final node in each walk as the
finger in its routing table. The protocol (Lesniewski-Laas, 2008) is
extended in Lesniewski-Laas and Kaashoek (2010) where the idea
of layered identifiers is introduced to counter clustering attacks.

As mentioned before, Whanau relies on the assumptions of a
fast-mixing social network and small number of attack edges,
which may not hold in real social networks (Mohaisen et al., 2010;
Viswanath et al,, 2010; Yang et al., 2011; Bilge et al., 2009). Les-
niewski-Laas et al.'s own results on mixing in real social networks
(Lesniewski-Laas and Kaashoek, 2010) still show a noticeable gap
from the expected result for a fast-mixing network. Also, Whanau
requires significant routing table state on the order of O (vn log n),

where n is the number of objects stored in the DHT. Mittal et al.
point out that the network overhead for maintaining this state can
be substantial (e.g. 800 Kbps per node) (Mittal et al., 2012).

X-Vine (Mittal et al., 2012) works by communicating over social
network edges. It builds a DHT on the top of a social network,
where each node in the system selects a random numeric identi-
fier. In the identifier space, each node maintains paths to its
neighbors. In X-Vine, honest peers rate-limit the number of paths
that are allowed to be built over their adjacent edges, which helps
to limit the number of Sybil nodes that can join the system. X-Vine,
however, relies on the fast-mixing assumption and was only
evaluated with a small number of attack edges (one for every ten
honest nodes).

8. Future work

In our future work, we would extend our attacker detection
scheme to handle the oscillation attack, in which case, an attacker
performs as both honest and malicious peer at regular interval. So,
if an inspection lookup is performed during its honest-role, the
attacker may get ‘+’ status. To prevent such attacks, the parent
node continues to perform inspection lookup for the child with ‘+’
status at random interval and once a node gets ‘—’ status, it is
sealed permanently, since we assume that an honest node always
performs legitimately.

The above mechanism is also effective in getting the current
status of a node, whose role is changed from honest to malicious
because of being compromised by an attacker. In our future work,
we would implement the above strategies to make our system
robust against such attacks. Moreover, we would evaluate our
system for larger datasets in future work.

9. Conclusion

In this paper, we propose a Sybil detection mechanism, which
accommodates a specially designed lookup mechanism to detect
the Sybils and a filtering mechanism to opt-out those detected
attackers during regular DHT lookup. We incorporate our me-
chanisms with Persea to develop the system: iPersea, which in-
herits the advantages of Persea that it gains over prior systems,
and ensures higher lookup success rate even when the malicious
targets respond with incorrect results. Our Sybil detection me-
chanism can be amended for incorporating with any DHT, where
the children of a node are connected through their parents, re-
quired to implement the inspection lookup.
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